Deep-sea carbon uptake off the California Coast (Station M, 4000 m)?

Crissy Huffard
Senior Research Technician

Pelagic-Benthic Coupling group: Ken Smith, Jr., Crissy Huffard, Linda Kuhnz, Larissa Lemon, Danielle Fabian, Rich Henthorn, John Ferreira, Paul McGill, Alana Sherman
Outline

• Background
• Introduction to MBARI
• Abyssal carbon dynamics
B.S. Marine Science
Ph.D. Integrative Biology
Post Doc at MBARI
4 yr. conservation science management (international)
5 yr. research tech
Monterey Bay Aquarium Research Institute (MBARI)

• MBARI is a peer relationship among scientists and engineers to accelerate ocean science progress through the development of new technology.
Monterey Bay Aquarium Research Institute

- MBARI is a peer relationship among scientists and engineers to accelerate ocean science progress through the development of new technology.

Biologists/ecologists
Engineers

Ken Smith, Jr., Crissy Huffard, Linda Kuhnz, Danielle Fabian, Larissa Lemon, Rich Henthorn, John Ferreira, Paul McGill, Alana Sherman
Monterey Bay Aquarium Research Institute

• MBARI is a peer relationship among scientists and engineers to accelerate ocean science progress through the development of new technology.

 Backgrounds: Military Industry NGO Students Academia

Ken Smith, Jr., Crissy Huffard, Linda Kuhnz, Danielle Fabian, Larissa Lemon, Rich Henthorn, John Ferreira, Paul McGill, Alana Sherman
Monterey Bay Aquarium Research Institute

- Location in Moss Landing allows us easy access to the Monterey Canyon’s deep-sea ecosystems
Monterey Bay Aquarium Research Institute

- Website: www.mbari.org
- Twitter: @MBARI_News
- YouTube channel: MBARI
Big-picture questions

• How much carbon actually makes it to the deep sea and gets stored in deep-sea sediments?
Big-picture questions

• How much carbon actually makes it to the deep sea and gets stored in deep-sea sediments?

• What happens to it once it’s down there?
Big-picture questions

• How much carbon actually makes it to the deep sea and gets stored in deep-sea sediments?
• What happens to it once it’s down there?
• How are deep-sea ecosystems affected by changes in carbon supply?
Station M is 4000 m deep
We can go there 1-2 times/year
Station M is 4000 m deep
We can go there 1-2 times/year

• Instruments need to work autonomously (robotically) 4000 m (2.5 miles) deep for up to one year
FOOD SUPPLY: sinking carbon quantity and quality
FOOD DEMAND:
Sediment community respiration
Benthic Rover turning into current
Pelagic-Benthic Coupling lab findings

- More carbon is reaching the CA seafloor now compared to the previous 20 years
Station M 4 kilometers deep
Low food supply
Station M 4 kilometers deep
High food supply
Pelagic-Benthic Coupling lab findings

- More carbon is reaching the CA seafloor now compared to the previous 20 years.

- Most of that carbon is consumed shortly after it reaches the sea floor, but recently we have seen some big surpluses.
Pelagic-Benthic Coupling lab findings

• More carbon is reaching the CA seafloor now compared to the previous 20 years

• Most of that carbon is consumed shortly after it reaches the sea floor, but recently we have seen some big surpluses.

• Animals and microbes move into the area and reproduce when food is abundant.
Thank you for attending!

Thank you David and Lucile Packard Foundation for funding us

Thank you ship’s crew and ROV pilots for supporting our at-sea endeavors