It has been said that physics explains the fundamental mechanisms of other sciences and creates new research opportunities in biology, chemistry and mathematics. Physics has a profound impact on the advances of new technologies that have come from theoretical breakthroughs.

A topic of conversation among stakeholders in education is whether physics should be taught in high school before other sciences. The Center posed this question to physicists.

Dr. J. Michael McQuade is Senior Vice President, Science and Technology, for United Technologies Corporation. His responsibilities include overseeing UTC Power and UTC’s Research Center and providing strategic oversight and guidance for research and development activities throughout the corporation. Dr. McQuade earned his Ph. D., M.S., and B.S. degrees in physics from Carnegie Mellon University. He is a member of CEE’s Board of Trustees.

Dr. Douglas E. Himberger is Senior Vice President and Director of Security, Energy, and the Environment, National Opinion Research Center (NORC) at the University of Chicago. He is responsible for new business in the area of security and is responsible for expanding the organization’s current portfolio of work in the areas of energy and the environment. Dr. Himberger earned a B.S. degree in Physics from Nebraska Wesleyan University, and M.S. and Ph.D. degrees in physics from Georgetown University. He is a member of CEE’s Board of Trustees.

Dr. Jennifer Hoffman is an Associate Professor at Harvard in the Department of Physics. Her research is about scanning probe microscopy of correlated

(continued on page 8)
Spotlight on CEE Board of Trustees

Congresswoman Susan Davis

Congresswoman Susan Davis, Representative for California’s 53rd Congressional District, currently serving her 6th term, recently joined the Center for Excellence in Education’s Board of Trustees. Congresswoman Davis is known for legislating as a bipartisan consensus-builder in education, health care, election reform, military families and veterans’ support.

“I will look forward to working with my distinguished colleagues and the Center to reach this nation’s goal of taking students and teachers to the next level of educational achievement for this country’s competitive leadership,” said Congresswoman Davis.

Arvind Parthasarathi

It is CEE’s pleasure to have Arvind Parthasarathi, RSI’90, as trustee on CEE’s Board. He is Senior Vice President and General Manager at Informatica Corporation (Nasdaq: INFA), responsible for defining, delivering, marketing and managing the company’s master data management and identity resolution solutions.

Prior to joining Informatica, Mr. Parthasarathi was Director of Product Management at 12 Technologies where he managed the radio frequency identification (RFID), product information management, supply chain integration, and supply chain event management product lines. He began his career in Product Management at Oracle Corporation.

Mr. Parthasarathi received his master’s degree in computer science from the Massachusetts Institute of Technology (MIT) and a bachelor’s degree in computer science from the Indian Institute of Technology.

Ron Hohauser

The Center welcomes Ron Hohauser, RSI’85, to its Board of Trustees. He is the Chief Financial Officer for Summit Entertainment, responsible for financial operations, human resources, information technology and investor relations. He played a key role in raising over $1 billion in equity and debt financing to position Summit Entertainment as a worldwide production and distribution studio. Before his Summit days, Mr. Hohauser was at Marvel Studios.

Mr. Hohauser received his MBA in Finance and Decision Processes from the Wharton School of Business. He graduated with a Bachelor of Arts degree with honors from the University of Virginia as an Echoles Scholar. His Interdisciplinary major was concentrated in Computer Science, Philosophy, U.S. Government and Economics.

CEE Sponsors Financing Start-Ups Panel

Research Science Institute Alumni gathered at the Massachusetts Institute of Technology (MIT) Stata Center for a discussion on Planning and Financing Start-Up businesses. The late spring event included a stellar panel:

- Dr. Tom Leighton – Co-Founder/Chief Scientist at Akamai Technologies, Inc.
- Marc Horowitz – Engineer at Facebook; RSI ‘87
- Matt DeBerghalis – Chairman and Founder of ActBlue; RSI ’94

Alumni learned first hand about how to take an idea to patent and how to strategize for taking the idea to market.

Panelists agreed that you cannot have a start-up and control every aspect of it. They emphasized the need to have people with business experience to handle the day-to-day administration to position the business for growth. Each suggested sticking to what you know best to accentuate the business and then hiring really good people to support your goals. All emphasized that the bottom line is you might have really great ideas, but not know enough about “business” to attract investors.

McDonnell Lauds Launch of Center for Excellence in Education's National Lab Skills Initiative in Virginia

Governor Bob McDonnell of Virginia announced the expansion of the Center for Excellence in Education’s National Lab Skills Initiative (NLSI) in the Commonwealth at a bill signing in Richmond to help increase college degree attainment in Virginia. The expansion of NLSI supports the goal of Governor McDonnell’s Commission on Higher Education Reform, Innovation and Investment and the “Top Jobs” legislation to better align higher education and business leaders in increasing degree access for jobs of the future.

Governor McDonnell reported to several hundred guests that the National Lab Skills Initiative will:

- Provide a clearinghouse of content rich programming to urban and rural underserved teachers
- Host "Share-a-thons" to work with Virginia teachers to share and develop lab activities that are cost effective, replicable, scalable, and may involve public/private partnerships in Abingdon, Manassas, Richmond and Hampton
- Disseminate cost-effective lab activities developed by teachers for teachers in Virginia.

The Governor thanked the Center’s Virginia partners on NLSI which include George Mason University, ExxonMobil, Micron Foundation, Southwest Virginia Higher Education Center, Systemic Solutions at Northern Virginia Community College the Virginia Space Grant Consortium and others.
The RSI Selection Committee, comprised of distinguished STEM professionals, met in McLean, Virginia in late February of 2011 to select students chosen on the basis of academic merit, demonstrated leadership, and scientific achievement. Selection also was based on standardized test scores, high school grades, essay submissions, teacher recommendations, and demonstrated potential to become future leaders in STEM.

At the Massachusetts Institute of Technology (MIT), scholars participate in college-level classes. Mentors are scientists and researchers at MIT, Harvard University, Northeastern University, Boston College, Boston University, and corporations in the Boston-Cambridge corridor.

The Center’s RSI program remains rich in tradition. Scholars experience a rigorous academic schedule including professional lectures, research design, oral and written communication skills, evening guest lecture series, and individualized research projects.

RSI 2011 was led by Dr. Andrew Charman, RSI ’86 alumnus and Lecturer in the Department of Physics at University of California Berkeley. RSI scholars were taught by:
- Dr. Steven Leeb of the Massachusetts Institute of Technology - Engineering
- Dr. Forrest Michael, RSI ’90 of the University of Washington - Chemistry
- Mr. Lance Rhoades of the University of Washington – Humanities
- Ms. Rebekah Rogers, RSI ’01 of Harvard University – Biology
- Dr. Christopher Skinner, RSI ’88 of Princeton University - Math
- Dr. Sam Waldman, RSI ’94 of the Massachusetts Institute of Technology – Physics

RSI scholars were also treated to the highly acclaimed RSI Distinguished Lecture Series featuring prominent STEM representatives and Nobel Laureates. The session also inaugurated a much requested economic component to the curriculum.

At the conclusion of the RSI program, Rickoids demonstrated their work through academic papers and offered their findings to their peers and a panel of judges. Commended for top written papers were Anni Cai (Singapore), Amy Chyao (Texas), Peter Lu (Illinois), Todor Markov (Bulgaria), and Debra Van Egeren (Michigan). Celebrated for oral presentations were Sam Backwell (Australia), Anni Cai (Singapore), Sitan Chen (Georgia), Hadass Inbar (Israel), and Matthew Rauen (Pennsylvania). The title “Rickoid of the Year” went to Daniel Pollack (New York). He was selected by his fellow classmates for individual scholarship and RSI community participation.

This year marks the 28th annual Research Science Institute (RSI) hosted at the Massachusetts Institute of Technology (MIT). Sponsoring 47 top-achieving U.S. scholars, including three Department of Defense Education Activity (DoDEA) students, and 30 scholars from other nations, RSI continued to demonstrate excellence and rigor. Represented countries were Australia, Bulgaria, China, Greece, Israel, Lebanon, Qatar, Saudi Arabia, Singapore, Spain and Sweden.

RSI is offered cost free to top-achieving high school students in science and mathematics with private and public financial donations. International students are supported by their respective nations, organizations or companies in their country. The highly revered RSI program allows young scholars to experience the world of graduate level research to propel them to new levels of achievement and academic success.

"Western Civilization was transformed by two great movements: the economic changes which we sum up as the rise of capitalism, and the changes in knowledge which we sum up as the scientific movement."

~ George Norman Clark

"Science, like democracy, is not built on hopes of human perfection but on an acknowledgement of human fallibility."

~ Benjamin Franklin

Anni Cai of Singapore received top written paper and top oral presentation awards for her research, “Determining the amino acids involved in inhibition of PDE4B by structurally-diverse compounds.”
For over three decades, the Center for Excellence in Education (CEE) has been at the forefront of advancing science, technology, engineering and math (STEM) education. CEE has adhered to its legacy of pioneering programs to nurture young scholars and to assure this nation’s competitive future. CEE announces the National Lab Skills Initiative to assure a future talented and diverse U.S. workforce in STEM. Through teachers, NLSI will support secondary school students’ readiness for the STEM workforce of the future.

NLSI offers high school biology teachers and students, especially at urban and rural schools, a clearinghouse containing an online compilation of laboratory programs including models for the classroom, after school, summer, and virtual and/or year-round learning experiences in selected states. NLSI also publishes laboratory activities online which are hands-on or virtual, cost-effective, replicable, scalable, and containing an assessment component and potential public/private partnerships.

CEE rolled out the National Lab Skills Initiative in Virginia in July and will inaugurate the Initiative in Indiana before taking it nationwide to Illinois, California, Texas, Alabama, Connecticut, Massachusetts, Mississippi, Montana, New Jersey, South Carolina, and then moving on to other U.S. states.

Charles Farmer, National Lab Skills Initiative Manager, is leading this Initiative. He brings to CEE his senior management experience in the private sector, along with expertise in administering large scale organizational roll outs. Kathy Frame, Director of CEE’s USA Biology Olympiad and Special Programs, will co-lead the Share-a-thons in all targeted states and will continue her outreach efforts to teachers.

NLSI provides an online Clearinghouse, which gives a listing of scientific resources and programs for educators in targeted states, allowing them more effective tools to engage their students. Teachers can use the Clearinghouse to supplement their classroom activities and to identify additional enrichment programs for their students.

NLSI also will host Share-a-thons which are professional development sessions in targeted states at which approximately twenty-five teachers per session will meet to present laboratory activities. Share-a-thons are the central component of NLSI and will allow teachers to present lab activities that they have developed. NLSI will then work with teachers to prepare their laboratory activities for online publication on the Science Education Resource Center (SERC) website at Carleton College.

Rather than bringing teachers to one central location for professional development, NLSI brings these experiences to the regions of urban and rural teachers in these states. CEE schedules the Share-a-thons in collaboration with the needs of partnering organizations in targeted states to serve diverse communities.

CEE will inaugurate the NLSI Share-a-thons in the cities of Abingdon, Manassas, Norfolk and Richmond, Virginia in 2011. The Center’s Virginia NLSI partners include George Mason University, ExxonMobil, Micron Foundation, Southwest Virginia Higher Education Center, Systemic Solutions at Northern Virginia Community College and the Virginia Space Grant Consortium.

The Indiana State Museum-Center for Science and Culture, 21st Century Scholars, Purdue University, Purdue University Science Express and Purdue University Science Outreach Office are partnering with CEE in Indiana. The Center plans Share-a-thons in the cities of Indianapolis, Gary, Logansport and West Lafayette, Indiana.

“The NLSI clearinghouse, combined with teacher Share-a-thons, are critical to ensuring effective laboratory skill instruction,” said Charles Farmer, Manager of the National Lab Skills Initiative. “NLSI is designed to integrate effective science pedagogy and professional development strategies. By providing teachers with laboratory skill tools and training, they in turn will prepare students for postsecondary education studies whereby they become this nation’s future STEM professionals.”

The Center’s National Lab Skills Initiative will serve a minimum of 87,500 students by the end of 2012 through Share-a-thons, and even more through the National Lab Skills Initiative’s Clearinghouse.

“The progress of science offers to increase the comforts, enlarge the understanding, and improve the morality of mankind.”

~ Thomas Jefferson
Inauguration – Saudi Research Science Institute (S-RSI)

The inauguration of the Saudi Research Science Institute (S-RSI) took place this summer at King Abdullah University of Science and Technology (KAUST). Saudi Aramco, KAUST and Mawhiba are partners with the Center for Excellence in Education for the S-RSI program.

The Saudi Research Science Institute is the first science, technology, engineering and mathematics (STEM) summer program for high school students in Saudi Arabia to include top-achieving math and science females. The Co-Directors of S-RSI were Dr. William T. Stuart and Dr. Ghadah O. Fakieh. Dr. Stuart previously directed CEE’s first Research Science Institute (RSI) and inaugurated the Center’s USA Biology Olympiad (USABO).

Twenty-five students participated in S-RSI. Candidacy was assessed on intellectual merit and leadership potential in science, technology, engineering and mathematics by a selection committee consisting of educators, scientists, KAUST and RSI staff.

S-RSI students mastered each step of the research process from literature review to the design, execution and analysis of an original experiment. The student projects led to the submission of a scientific paper and a plenary session where they reported their findings.

Students of S-RSI are now, part of the RSI Alumni network that will continue throughout their academic and professional careers. In fact, S-RSI students participated in a Skype chat with RSI students at MIT this summer. They will be encouraged to stay in contact with each other through social, academic and professional activities.

Where Are They Now?

- Jud Bowman, RSI’98, is the Founder & CEO of Appia and former Co-Founder & CTO of Matricity (Nasdaq: MOTR).
- Dr. Jeremy Buhler, RSI’91, is Associate Professor at Washington University in St. Louis, Missouri, serving as interim Department Chair for Computer Science and Engineering. Dr. Buhler has secondary appointments in the Departments of Biology and Genetics.
- Dr. Sara Goldhaber-Fiebert, RSI’92, is a faculty member at the Stanford Medical School.
- Dr. Eric Rains, RSI’86, is a Professor of Mathematics at California Institute of Technology.
- Jonathan Kemp, RSI’91, is a Science Operations Specialist at the Gemini Observatory in Hilo, Hawaii.
- Scott Duke Kominers, RSI’04 is a Postdoctoral Research Scholar at the Milton Friedman Institute for Research in Economics at the University of Chicago.
- Shishir Mehrotra, RSI’95, is the Director of Product Management at Google, responsible for YouTube Product Management.
- Dr. Rinaa Punglia, RSI’89, is Assistant Professor of Radiation Oncology, Harvard Medical School. She also is a member of the Department of Radiation Oncology at Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Boston, MA.
- Dr. Oliver Rando, RSI’90, is Associate Professor of Biochemistry and Molecular Pharmacology at the University of Massachusetts Medical School.
- David Schairer, RSI’89, is the Chief Technology Officer and co-founder of Trapit. He is responsible for steering the company’s technology strategy and leading the engineering organization in the development and delivery of all Trapit products, services and infrastructure.
- Dr. Prasanna (Sonny) Tambe, RSI’91, is Assistant Professor of Information, Operations and Management Sciences of the Leonard N. Stern School of Business at NYU.

“A man never mounts so high as when he knows not where he is going.”
~ Oliver Cromwell

USA Biology Olympiad

The USA Biology Olympiad (USABO), in collaboration with Purdue University, was held June 5th through June 17th on Purdue’s campus. Twelve male and eight female students were chosen from nearly 10,500 students for their scores on the USABO open and semifinal exams.

The USABO, a progressive academic competition, starts with an Open Exam administered nationwide to interested high school students at participating schools. The Open Exam is a 50-minute/50-multiple choice question exam designed to identify the top 10% of biology students in the nation. The next round, the Semifinal Exam, is a two-hour multiple choice and short answer exam that continues to heavily focus on application-based inquiry. From the Semifinal Exam, the top 20 students in the nation are invited to join USABO faculty at the National Finals training session at Purdue to compete for U.S. medals and the four places on Team USA to represent the United States at the International Biology Olympiad (IBO).

(continued on page 6)
Research Science Initiative in India

This summer marked the second year for the Research Science Initiative in Chennai, India. The intensive four-week program was held at the Indian Institute of Technology Madras (IITM) in collaboration with the PSBB Millennium Group of Schools and the Center for Excellence in Education. All secondary schools in Chennai were invited to nominate outstanding math and science students for the program, of which 30 young scholars were chosen.

The program took place from May 4th - June 10th. At the closing ceremony, Joann DiGennaro, CEE’s President, gave the keynote address and presented awards with Dr. (Mrs.) Y.G. Parthasarathy, Dean and Director of the PSBB Group of schools.

The Research Science Initiative in India offered a plethora of activities apart from academic lectures by eminent scholars in the fields of math, computer science, physics, chemistry, biology, biotechnology and other scientific fields. Professors from IITM, The Institute of Mathematical Sciences, Chennai Mathematical Institute, Anna University and Sastra University (Thanjavur) taught various topics ranging from Scaling in Physics to Probability in Math.

RSI India scholars visited Shanmugam Precision Forging (SPF) and were shown how high precision instruments were used and maintained. The RSI group went to BHEL, Trichy, one of the top 10 providers of electrical equipment to the world. Students toured the labs of Sastra University and The Hindu Printing Press. The RSI India scholars also attended the Ramanujan Mathematical Institute at Kumbakonam. They also visited the labs at IITM, Anna University, M.S. Swaminathan Research Foundation and Saint-Gobain Glass India, Ltd.

RSI India 2011 alumni have the opportunity to network with USA-RSI, China, Bulgaria and Saudi Arabia scholars through an active alumni network. They are now part of a tight community of approximately 2,000 alumni around the world. This networking component is underwritten by the Caterpillar Foundation.

USA Biology Olympiad (from page 5)

The twenty National Finalists were welcomed by France A. Cordova, President of Purdue University. She acknowledged her love of science, highlighted her role as the youngest person and first woman to hold the position of NASA Chief Scientist, and encouraged their pursuit and study of biology.

During their two weeks at Purdue, the finalists participated in intensive theoretical and practical tutorials with experts in the fields of cellular biology, microbiology, biotechnology, plant anatomy and physiology, animal anatomy and physiology, ethology, genetics and evolution, ecology, and biosystematics. The students also toured research laboratories in Discovery Park and elsewhere on campus.

At the USA Biology Olympiad Closing Ceremony, the Center for Excellence in Education and Purdue University named the four top-scoring students from the practical and theoretical exams. These students, known as Team USA, went onto win 4 gold medals at the 22nd IBO held in Taipei.

The USA Biology Olympiad 2011 National Finalists on the “Boilermaker Special” at Purdue University
The Hart Senate Office Building was the setting for the annual spring CEE Congressional Luncheon sponsored by SAIC for Supporters and Friends of the Center. The event celebrated the success of CEE’s educational programs that assist the world’s greatest young minds to pursue careers in science, technology, engineering, and mathematics (STEM).

The premier Research Science Institute (RSI), offered in partnership with the Massachusetts Institute of Technology (MIT), and the renowned USA Biology Olympiad (USABO), collaboratively sponsored with Purdue University, were proudly recognized at this event. CEE shined the spotlight on its newest program, the National Lab Skills Initiative (NLSI), to be rolled out in Virginia and Indiana before its inauguration nationwide. The National Lab Skills Initiative for urban and rural teachers is to assure a future talented and diverse U.S. workforce in STEM.

Joann DiGennaro, President of CEE, stated, “CEE has a 28-year record of achievement and will remain at the forefront of identifying and mentoring young scholars who will be the innovators and leaders of the U.S. in STEM. Now the Center will assist teachers too.”

Senators Joseph Lieberman (CT) and Lindsey Graham (SC), CEE Honorary Board Members, addressed the Center’s Congressional Luncheon attendees.

Congressmen Randy Hultgren (IL) and Robert Dold (IL), also provided comments. Each emphasized how good education is the foundation to assure this nation’s future. Senator Graham stated, “Great scientific minds come from U.S. schools, and it is a good investment to create a sound future full of possibilities.”

In reflecting on CEE’s earlier days, Senator Lieberman stated, “The Center for Excellence in Education is Admiral Rickover’s Legacy. CEE has good programs and ideas and could not get where it is today without the support of its sponsors. His legacy will live on, thanks to all of you.”

Joann DiGennaro, President of CEE, CEE President.
electron systems with a focus on scanning tunneling microscopy of novel superconductors. Dr. Hoffman received her Ph.D. and M.A. in physics from the University of California. She received her B.A. from Harvard University and graduated magna cum laude with Highest Honors in physics. She is a RSI’94 alumna.

Dr. John Dell is Director, Modern Physics and Optics Lab, at Thomas Jefferson High School for Science and Technology in Alexandria, Virginia. Dr. Dell received his B.A. at Hampshire College, and a Master of Science and a Ph.D. from the University of Maryland. Dr. Dell served as the Research Science Institute (RSI) Director in 2002, and he helped to inaugurate CEE’s Saudi Research Science Institute (SRSI) in 2011.

Question: An important movement among educators is that of teaching high school physics before biology. Why would you support or not support this change?

Dr. J. Michael McQuade

As a broad foundation science, physics provides a grounding in observation, the basic scientific method and, importantly, an introduction to the role of mathematics as the basic tool to codify the observed and hypothesized world. The emerging realization that these two pedagogic underpinnings – observational and mathematical methods – can be approached at multiple levels, depending on the maturity of the student, drives the physics first movement. Younger learners have a rich set of options and experiences to experiment, record and analyze with basic algebra and geometry, while building their competence to approach later disciplines – chemistry, biology, calculus-based physics – with a then more broadly developed set of skills.

A second driver for the move to delay biology is the fundamental transformation of what we now teach in the biology classroom. The last twenty years have seen biology move from being an observation-based, classification and phenomenological curriculum, to a highly technical experimental and theoretical physio-and chemico-biological science. This argues for a deeper background in physics and chemistry to allow a full appreciation for the fundamental processes being explored and taught in a modern molecular biology curriculum.

Dr. Jennifer Hoffman

From a scientific standpoint, it is a very good idea to move physics before biology. I can’t think of a single physics’ concept which relies on knowledge of biology. But I can think of many biological concepts which rely on physical concepts. For example, thermal expansion and contraction, and buoyancy are important concepts to understand why the water in a lake turns over every fall and spring, oxygenating the water and allowing more life. Viscosity is important for understanding many of the fluid processes in cells and in the human body. Electromagnetic forces are important for understanding neuron function.

The main problem with moving physics before biology is math: the more math that the students know, the more rigorous the physics course can be. Since students are building on their math knowledge progressively throughout high school, there is an argument that a better physics course can be taught later in high school.

But I don’t agree with the math argument. One should be able to teach a good physics course which emphasizes conceptual understanding. Most students walk into a physics course with so many crazy misconceptions. (For example, Prof. Eric Mazur has shown that most students
Physics Taught Before Biology??? (from page 8)

Dr. Jennifer Hoffman (cont’d)

The points made about math were entirely true in my case – my physics teacher gave me additional help and support as the class progressed to fill in my gaps. Additionally, that physics teacher believed in what was then a non-traditional curriculum – emphasizing many of the points made by Drs. McQuade and Hoffman. This extra support and tailored experience from teachers and the school can’t necessarily be expected on a regular basis – and could prove troublesome when scalability is considered.

That said, presenting physics to students first could open us to thinking more specifically about concepts, and could transform other science education – and even education writ large.

Question: Why do you think it is important to have students take physics courses in high school and at the university level?

Dr. J. Michael McQuade

Physics is a foundational science, and a comprehensive course of study provides the broad experimental, observational, analytical and mathematical tools necessary to pursue most effectively all other science and engineering courses of study.

Dr. Jennifer Hoffman

Physics is excellent for overall reasoning ability. If physics is taught at a conceptual level (instead of “plug and chug” into given formulas), it really forces students to practice thinking.

At the college level, a physics course for non-physics majors should emphasize real world skills like how to read a graph, how to interpret the statistical significance of a public news claim, etc. Students should understand conservation of energy and laws of thermodynamics in order to realize that using hydrogen fuel isn’t going to magically solve our energy problems. It’s just going to shift the pollution problem from one physical location (the streets) to another (the coal mines, or wherever the energy is originally extracted from the natural environment). Furthermore, there will be additional energy lost during the additional conversion step from some other form of energy to hydrogen energy; due to the laws of thermodynamics (entropy always increases, useful energy is always lost to heat during any conversion process).

Dr. John Dell

All of modern science and technology is based on manipulation of fundamental physical structures. The point is that machines or devices that perform in predictable ways are typically the results of applications of fundamental physical principles. These devices and machines provide the functional instrumental basis of other sciences.

Dr. Douglas Himberger

The “scientific method” is key to thinking critically – and though that paradigm can be taught in any and all of the sciences (biology, chemistry, and physics, to be sure), I believe physics approaches this in a way that is broadest in its application. Nearly every topic of current societal concern – energy, environment, security, and others – can often be addressed, quantified, and even analyzed through careful application of the techniques that are taught in high school physics, and elaborated (with greater rigor and underlying math) in college.

Question: What do you think are the exciting areas in physics for meeting future challenges in health, national security, environment, and energy?

Dr. J. Michael McQuade

Basic energy sciences – thermodynamics, fluid mechanics, transport phenomena and combustion - are critical to attacking our most urgent global challenge of how to create a world in which energy is secure and available while mitigating the historical and projected impacts of global warming and climate change. This is health, national security, environment, and energy all wrapped up into one.

Dr. Jennifer Hoffman

Energy storage (materials science of batteries, etc.) Energy transmission (superconductivity, etc.)

Dr. Douglas Himberger

Nanotechnologies, communication technologies, high-energy technologies – the list is endless, and every element exciting. All those areas mentioned by the others have their place on this list of fields of physics meeting our challenges … and all offer promising advances. However, even more exciting are those that have yet to emerge. Who could have foreseen the role of semiconductors on our society and economy just a few decades ago? Who could have foreseen the impact that wireless communication would have on every aspect of our lives? Similar emerging fields in physics will have similar impact … the exciting part will be seeing those developments spring from our young physicists!
The Center for Excellence in Education’s Donors
From September 1, 2010 to August 31, 2011

With Our Thanks!

Donors up to $25,000

Biogen Idec Foundation
Caterpillar, Inc.
Department of Defense Education Activity
Building and Engineering Science Talent
(BEST)
Genentech, Inc.
Hariri Foundation
Kennedy Foundation
The Leonetti/O’Connell Family Foundation
Massachusetts Institute of Technology (MIT)

MAW Hibah
The Ralph M. Parsons Foundation
Purdue University
Sallie Mae
Saudi Aramco
Singapore Ministry of Education
The Smang Samo Family Foundation
Texas Instruments, Inc.
United Technologies Corporation

Mr. and Mrs. Gerald Horowitz
Mr. and Mrs. Mark H. Horowitz
Dr. and Mrs. Zack Hu
Dr. Chung-Chi R. Hu and Ms. Chieh-Chen Fung
Mr. and Mrs. Michael Huang
Mr. Mark L. Huang
Dr. Mark Hughes and Dr. Delta Seng
Mr. and Mrs. Jack Hung
Mr. Paul E. Hurwitz and Mrs. Rosanne Apte-Dorwart Hurwitz
Dr. John Z. Imbrie and Dr. Marcia M. Moore
Mr. and Ms. Takashi Ishizuka
Mr. and Mrs. Jeffrey Janaskie
JHS, Incorporated
Mr. Xiangguo Jia and Mrs. Vicki Rong
Mr. and Mrs. Wayne K. Kamitsuki
Mr. Sean Kanuck
Dr. and Mrs. Roychow Kowai
Kester Family Foundation
Mr. Patrick M. Kenny
Dr. and Mrs. Raman Khanna
Mr. and Mrs. Richard Kiprey
Mr. and Mrs. Tong-Hui Kim
Mr. Kyu-Myoung Kim and Ms. Jyuen Jung
Dr. and Mrs. Chao-Hong Koh
Mr. and Mrs. Stan Komander
William Komimmers and Mrs. Ellen Dickstein Komimmers
Mr. and Mrs. Thomas Kohredes
Mr. and Mrs. Margaret K. Moscow
Mr. and Mrs. Bhargat Lakhanpal
Ms. Ilia F. Laughter
Ms. Ruth Lavine
Mr. and Mrs. Gregory C. Lawlor
Mr. and Mrs. Jasper Layne
Ms. Dennyse Le Fevre
Dr. and Mrs. Jong Kee Lee
Dr. and Mrs. Jung-Keeun Lee
Mr. Dean J. Lee
Laurence Law, Ph.D.
Mr. George Lee and Mrs. Wai Wah Chin
Mrs. Susan S. Lee-Ko
Mr. and Mrs. Robert F. Lehany
Dr. and Mrs. Ding-Hwa Lee
Mr. and Mrs. Benny Leung
Dr. and Mrs. Bervyn J. C. Lin
Mr. Bin Lin and Dr. Xiangfei Zeng
Mr. and Mrs. Mark Shiyao Liu
Ms. Julia V. Label
Dr. Zhenglian Lu and Mrs. Diying Wu
Mr. and Mrs. James Lyons
Dr. Yongjia Ma and Ms. Ling Liu
Mr. Michael Magan
Dr. James Magyar and Dr. Elaine S. Magyar
Ms. Jane Maier
Dr. Vladimir A. Mandelesh
and Dr. Svetlana Y. Jitomirskaya
Mr. George Mannes and Dr. Margarin Jen
Dr. John C. Mather
Dr. Benjamin S. Mathews
Mr. and Mrs. John A. McCormack
Dr. and Mrs. Michael Pablo Mendo, Ph.D.
Mr. and Mrs. Edward D. Adam
Mr. and Mrs. Michael J. Miller
The Honorable Michael
Mr. and Mrs. Mark W. Mueller
It is important to know that you remain in charge of the planning process. You can amend your will by codicil or prepare an entirely new will, giving you the flexibility to meet changing needs and remain a firm supporter of the Center for Excellence in Education.

Matching Gifts double your contributions to the Center! Please visit www.cee.org to donate online. Ask your employer if your annual contribution is matched by your company. CEE occasion cards also are now available. Contribute to CEE to honor life’s special occasions. For more details, contact Jackie Ortiz at jortiz@cee.org

CEE is a member of the United Way (#2474). Our CFC number is 52-1256563, before December 31, 2011. 3. Save taxes by taking an IRA “rollover” gift instead of declaring your withdrawal as income on your 2011 income tax return.

To Make A Gift From Your IRA:

1. Contact your IRA custodian immediately. Many plans require 2-3 weeks to make distributions.
2. Tell your IRA custodian to make a gift to the Center for Excellence in Education through a direct IRA distribution. The gift identification number 52-1256563, before December 31, 2011.
3. Save taxes by taking an IRA “rollover” gift instead of declaring your withdrawal as income on your 2011 income tax return.

Matching Gifts double your contributions to the Center! Please visit www.cee.org to donate online. Ask your employer if your annual contribution is matched by your company. CEE occasion cards also are now available. Contribute to CEE to honor life’s special occasions. For more details, contact Jackie Ortiz at jortiz@cee.org

CEE is a member of the United Way (#2474). Our CFC number is 52-1256563, before December 31, 2011. 3. Save taxes by taking an IRA “rollover” gift instead of declaring your withdrawal as income on your 2011 income tax return.
About the Center for Excellence in Education

The Center for Excellence in Education (CEE) nurtures careers of excellence and leadership in science, technology, engineering, and math (STEM) for academically talented high school and college students and encourages collaborations between and among leaders in the global community. Founded in 1983 by the late Admiral H.G. Rickover and Joann DiGennaro, President of the Center for Excellence in Education, the Center’s programs help keep the United States competitive in science and technology. CEE challenges young scholars and assists them on a long-term basis to become the creators, inventors, scientists, and leaders of the 21st century.

As a private non-profit organization, CEE is not subject to federal and state mandates or political pressures. All CEE programs are open to students and teachers regardless of race, color, creed, or economic background; the only criterion is academic excellence. CEE sponsors the Research Science Institute, the USA Biology Olympiad and the National Lab Skills Initiative.

To date, CEE has received funds from the U.S. Department of State, the U.S. Agency for International Development, the National Science Foundation, the United States Information Agency, the National Endowment for the Humanities, the National Security Agency, the Bureau of Indian Affairs, the Department of Agriculture, the Department of Energy, and the Department of Defense. Private individuals and corporations, however, provide most of CEE’s funding.