
Distributional Quantization of Large Language Models

Radostin Cholakov

Under the direction of

Han Guo
Prof. Yoon Kim

Massachusetts Institute of Technology

Research Science Institute
August 1, 2023

Abstract

As large language models (LLMs) continue to grow in size and complexity, efficiently storing
and utilizing them without overwhelming computational resources emerges as a crucial chal-
lenge. We present a novel method for quantization of LLMs, which stores their parameters
in 4 bits while maintaining a performance level comparable to full-precision models. The
weight matrices are split into blocks, and for each block, quantization bins are computed
as quantiles of a probability distribution. We analyze blocks following Gaussian, Beta, and
Student’s t distributions and provide intuition about the parametric assumptions made for
each of them. Also, a numerical optimization algorithm is introduced to further minimize
the loss of precision for quantizing each block. Our method significantly reduces recon-
struction error compared to current 4-bit quantile quantization works with the same storage
requirements. A further discussion on when the loss reduction can enhance actual language
modeling performance is provided, and we successfully report state-of-the-art results on the
LLaMA-2 model in terms of text generation perplexity on the WikiText-2 benchmark.

Summary

Despite the usefulness of large language models, their significant size and computational
needs pose a barrier to widespread usage and accessibility on consumer hardware. In this
work, we investigate methods to reduce the size of LLMs with a novel approach for com-
pressing their weights by rounding to samples from a probability distribution. We explore
what the optimal distribution is for each block and how to efficiently compute its parameters.
An optimization algorithm that can further refine the initial assumptions is also introduced.
Using the same storage as previous techniques, we achieve a significant reduction in precision
loss for quantizing weights of modern LLMs. Finally, we provide an analysis of when a de-
crease in that loss could lead to an increase in model performance and report state-of-the-art
text generation quality with the LLaMA-2 language model, released just in July 2023.

1 Introduction

The field of Natural Language Processing has evolved significantly with the integration

of Large Language Models (LLMs) [1, 2, 3]. These models are now used across a broad spec-

trum of tasks including language understanding, text generation, translation, summarization,

sentiment analysis, question answering, and code generation, and can achieve near-human

abilities in all of them. Earlier approaches primarily relied on recurrent neural networks

processing text one item at a time based on the result from the previous predictions in the

sequence. This imposed two key obstacles: (i) modeling relationships far apart in input

sequences was challenging due to propagation constraints; (ii) the computational complexity

caused by the sequential nature of these networks made them inefficient for scaling. The

introduction of the Transformer architecture [4] changed the paradigm of language modeling

by breaking away from recurrent processing. Instead, Transformers use attention mecha-

nisms to capture dependencies irrespective of where they occur in the input text. They also

allow all sequence items to be processed in parallel, facilitating scalability.

Having these properties, Transformer models started growing large, and the concept of

pre-training them on unstructured text corpora and then fine-tuning for a specific task with

less data emerged. Presently, state-of-the-art LLMs [5, 6, 7, 8] are trained on trillions of

text tokens, and their parameter counts vary from a few billion up to more than 540 billion.

This results in significant computational power and storage requirements far surpassing what

is currently available with standard consumer hardware. For instance, even the relatively

modest-sized model LLaMA-65B [7] needs 130GB of GPU RAM for inference and more than

780 GB for fine-tuning with new data.

A way of compressing the size of the models is to quantize their parameters, which are

usually stored in 32-bit or 16-bit floating points, to lower precision data types and reconstruct

an approximation when needed. It is usually achieved by either scaling and rounding values

1

Figure 1: An example of K-means quantization in 2 bits illustrating a weight matrix of a
language model. Its floating-point elements are grouped into four clusters, and within each
group, the values are replaced by a 2-bit integer index. Only four full-scale floating points,
representing the centroids for each cluster, are stored.

to a limited set of approximations or grouping values into clusters, each represented by an

approximate value.

Past research has demonstrated the successful storage of LLMs in 8-bit [9, 10, 11] and

even the ability to train or use them [12] with low-precision arithmetic without significant

performance degradation. Recent advancements exploit structural characteristics of the dis-

tribution of weight values to push the limit to 4-bit [13] and even 3-bit [14, 15] quantization.

Some of them rely on the fact that deep neural networks, and language models in particular,

have normally distributed weights to perform quantile quantization. In it, all the possible

weight values are rounded to quantiles of a normal distribution with empirically optimal

mean and standard deviation.

Though this already allows for inference and fine-tuning of performant language models

on consumer-grade hardware, there are no extensive studies on where the limits of quantile

quantization are. In this work, we explore the cases in which quantiles for quantization

are computed with various distribution types and distribution parameters. We show that

a numerical optimization algorithm is sufficient to learn block-wise standard deviations for

normally distributed weights leading to a considerable reduction in reconstruction loss with

2

no increase in storage. We can further decrease the reconstruction loss with a storage trade-

off by allowing certain blocks of the model to be quantized with quantiles from Beta or

Student’s t distributions. Finally, we discuss the relation between reconstruction error and

real language modeling performance and present state-of-the-art results for LLaMA-2.

Section 2 provides key terms and prior quantization methods. Section 3 presents our

novel approach for quantization with quantiles from different distributions. Experiments

quantifying performance gains and storage costs are described in Section 4. Section 5 contains

the results.

2 Background

2.1 Uniform Quantization

The most widely used quantization methods are zero-point and absolute maximum

quantization. Both of them work by rescaling and rounding off the original values within a

specific range. For instance, if we want to store each parameter in 8 bits instead of 32, we

can use an integer data type that has 28 possible uniform values in the range [−128, 127].

All the parameters will be rounded to those values (mentioned later as bins) and a single

32-bit scale will be saved. In this case, the memory usage decreases from n×32 to n×8+32

bits for n parameters. In the reverse operation, multiplying the scale by the 8-bit integers

produces an approximation of the original values.

Zero-point integer quantization scales entries of a weight matrix W ∈ Rm×n by the

scale s to the range [0, 2b− 1] or, when signed, [−(2b−1− 1), 2b−1− 1] for a b-bit integer data

type. The method is used when the values are asymmetrically distributed with an additional

zero-point parameter z to shift the values. More formally, it is defined as:

quantizeib(Wf32) =
⌊
sf32 ·Wf32

⌉
− zib = Wib, (1)

3

sf32 =
2b − 1

max(Wf32)−min(Wf32)
, zib =

⌊
sf32 ·min(Wf32)

⌉
, (2)

dequantize(Wib, sf32, zib) =
Wib + zib
sf32

= Wf32, (3)

where nearest-integer rounding is denoted as b·e. It utilizes the full range of the low-precision

data type, which leads to lower reconstruction error. However, it does have practical con-

straints, specifically requiring more storage space to accommodate an additional zero point.

Absmax quantization also scales the values down to the range of the low-precision

data type by s32 as follows:

quantizeib(Wf32) =

⌊
(2b−1 − 1) ·Wf32

max(|Wf32|)

⌉
=
⌊
sf32 ·Wf32

⌉
= Wib, (4)

dequantize(Wib, sf32) =
Wib

sf32
= Wf32. (5)

For each set of quantized numbers, a single scale s32 is stored, thus saving more space

compared to zero-point quantization. A notable limitation of this method is the inability to

account for asymmetrically distributed data or outliers. When such are present, some of the

quantization bins will contain a few or no values.

2.2 Non-uniform Quantization

As noted in [15, 16], whether the ranges of each bin are uniformly sized is an important

factor to consider depending on the use case. Uniform quantization enables direct arithmetic

operations on the quantized values and easy computation of the bin thresholds. However,

when the data being quantized is not uniform certain bins will remain underutilized and will

produce higher reconstruction errors.

4

The weights of machine learning models, especially language models, do not distribute

uniformly. Instead, they tend to adhere to a normal distribution as shown in Appendix B.

Because of that, non-uniform methods are being developed and currently lie behind the

state-of-the-art works on quantization. In simple terms, they allocate more bins to zones

that exhibit a high density of weights.

K-means quantization groups the values to be quantized into k clusters. Each value

is then replaced by one of k indices, typically integers in the range [0, k− 1] occupying log2 k

bits of storage each. A lookup table with k centroids for each cluster is stored in full-precision

and then used during dequantization. Usually, the K-means algorithm is implemented by

starting with a random selection of cluster centers and assigning each data point to the

closest centroid. Then the centroids are recalculated as the mean of all points assigned to

them. These steps repeat iteratively until convergence. Formally, given m points x1, . . . , xm

it finds centroids M = {µ1, ..., µk} ⊂ R minimizing the objective

m∑
i=1

min
µ∈M

(xi − µ)2. (6)

However, in the case of quantization, we are working with scalar values only, and thus

a 1-dimensional K-means solution could be used to avoid convergence to local optima. An

algorithm for optimal 1D clustering using O(mk) time and space is given in [17]. Based on

Eq. (6), it becomes clear that when quantizing weights W into WQ with elements in b =

log2 k bits, K-means will consistently produce the lowest reconstruction error ‖W−WQ‖F
across all b-bit methods. However, this method requires n × b + k × 32 bits in total for

quantizing n values and storing centroids for k clusters, which is much more expensive than

both absolute maximum and zero-point quantization.

Quantile quantization utilizes that fact to produce a code with which values are

rounded to quantiles of a normal distribution. It usually requires equivalent storage to

5

absmax quantization since only the absolute maximum value is needed for quantile compu-

tation. For example, the NormalFloat 4-bit type (NF4) [13], designed to be information-

theoretically optimal, has values computed as q̃i = Φ−1(pi) for cumulative probability values

p = {δ, . . . , 0.5, . . . , 1− δ} where the elements of the subsets {δ, . . . , 0.5} and {0.5, . . . , 1− δ}

are evenly spaced. The constant offset δ is set to δ = 1
2
(1
32

+ 1
30

). The q̃i’s are normalized to

the range [−1, 1] as qi = q̃i
max
i
|q̃i| . Thus, the final code consists of quantiles of the Gaussian

N (0, σ2) with the rather specific standard deviation:

σ =
1

Φ−1(1− δ) =
1√

2 erf−1(1− 2δ)
. (7)

Yoshida D. (2023) [18] proves that NF4 is not information-theoretically optimal but is

near-empirically optimal. However, neither work addresses why the specific offset of 1
2
(1
32

+ 1
30

)

is used, and, if we can choose a different code distribution based on the weight values.

2.3 Block-wise Quantization

Employing any of the described methods to quantize an entire weight matrix in an LLM

can prove to be inefficient due to the presence of outlier elements. A single outlier can distort

the representation of the quantization bins, leading to suboptimal utilization. Furthermore,

the high variability in weight elements makes their effective representation with specific

parameters (such as absolute maximum value in absmax, the standard deviation in quantile

quantization, or 2k centroids in K-means) particularly challenging. To mitigate this, it might

be worth making a minor memory trade-off by quantizing sections of the weight matrix

independently. Current literature [12, 15] presents various methods to partition a weight

matrix into blocks, for instance, by separately quantizing each row or column of the matrix.

6

2.4 Possible Optimization Methods and Parameterization

To minimize a non-linear objective, such as the reconstruction error, a numerical solver

could be used. Among many possibilities, in this project, we make use of the Nelder-Mead

algorithm [19, 20]. To optimize d parameters, it utilizes a polyhedron with d + 1 vertices

and iteratively updates its vertices toward an optimal solution by reflection, expansion,

contraction, or shrinkage. A full outline is provided in Appendix D. In the context of

quantile quantization, the parameter space to be optimized is presented in Table 1.

Distribution Range Optimizable parameters

Normal (−∞,∞) µ - mean, σ - standard deviation, δ - quantile offset
Student’s t (−∞,∞) ν - degrees of freedom, δ - quantile offset, c - scaling factor
Beta [0, 1] α, β - shape, rescaling and shifting might be needed

Table 1: Possible distributions and their parameterization considered for optimization.

3 Methods

In this work, we perform block-wise quantile quantization by choosing an empirically

optimal distribution for each block. Initially, we consider the error ‖W −WQ‖F for the

weight matrices W as an objective and show that numerical optimization is enough to

produce significant decreases in reconstruction error with no or little memory increase.

Figure 2: An example of distributional quantization in 4 bits with block size B. A distribu-
tion and its parameters are chosen for each block of weights. Then 24 quantiles are computed
as bins, and the index of each quantile is stored in 4 bits.

7

As illustrated in Figure 2, weight matrices are divided into contiguous arrays, followed by

quantile quantization. Quantiles from a specific distribution for each block are calculated,

storing only the distribution parameters in full-scale floating point numbers. To maintain

the same storage level as absmax quantization or the quantile quantization outlined in [13],

simplified parameterization of distributions is also considered. For instance, setting µ = 0 as

a constant for normal distribution and focusing solely on optimizing its standard deviation

or constraining α to be equal to β in the beta distribution.

3.1 Numeric Optimization

A way to minimize the reconstruction error for quantizing with an arbitrary distribution

is to make a good initial guess about its parameters from the empirical variance of the weights

and then use a numerical solver to decrease the objective further. In our work, we choose

to use the Nelder-Mead algorithm because it can optimize a various number of parameters,

does not require gradient computations, and is able to converge to optima even for complex

non-linear functions. The steps performed by the algorithm in the implementation we use

are shown in figure 3. Having this intuition, we make parametric assumptions about the

distribution of each block in a model and initialize the Nelder-Mead method with parameter

estimates to facilitate convergence.

v1

v3

v2

v1

v3

v2

v1

v3

v2

v1

v3

v2

v1

v3

v2

Figure 3: Visualisation of the steps taken by the Nelder-Mead algorithm in 2D.

8

3.2 Parametric Assumptions

3.2.1 Gaussian Case

Considering that the weights in LLMs typically follow a normal distribution, we first

investigate quantizing using quantiles qi = Φ−1(pi) from an optimized Gaussian. The cumu-

lative probability values are p = {δ, . . . , 0.5, . . . , 1− δ} for an offset δ to utilize the full range

of a 4-bit floating point type. The initial parameterization is qi ∼ N (0, s2) where s is the

standard deviation computed from the weight values in each block. Then s is further opti-

mized by the Nelder-Mead algorithm on the reconstruction loss objective. This quantization

takes up B × 4 + 32 bits of storage per block with size B. An alternative parameterization

to optimize the offset δ instead of the standard deviation s is given in Appendix C.

3.2.2 Student’s t Case

The Student’s t distribution, controlled by its degrees of freedom ν, generalizes the stan-

dard normal distribution. When ν = 1, it resembles the standard Cauchy distribution, and

as ν → ∞, it approaches N (0, 1). We explore cases where quantization quantiles follow a

Student’s t distribution with low degrees of freedom ν and thus have heavier tails.

• Set ν = 1, ν = 2, or ν = 4 and draw q̃i ∼ Student’s t(ν). Optimize a scaling factor c

for each case such that qi = cq̃i. This approach requires B × 4 + 32 bits per block.

• Set the scale as c = s, with s being the standard deviation from Section 3.2.1, and

optimize ν. The intuition from Section 3.1 is followed to provide an initial 2D simplex

(line segment) to the numerical optimizer with one guess at a low degree of freedom,

such as ν1 = 1, and another at a relatively high value, e.g., ν2 = 64. This approach

allows for the exploration of smaller values, with ν2 as a fallback. High ν’s approximate

the Gaussian case and ensure that reconstruction error will remain at least as low during

optimization. The method requires B × 4 + 2× 32 bits per block.

9

3.2.3 Beta Case

The weights in some blocks, especially with small block sizes, and in specific parts of the

models might follow a Beta distribution. We explore that case by using quantiles q̃ ∼ B(α, β)

as the quantization bins. Since our data is in the range [−m,m] for a block with absolute

maximum value m = max(|B|), we need to rescale the Beta samples from their original range

[0, 1] to qi = m(2q̃i − 1). The expected Beta mean µ̃ and variance s̃2 before rescaling can be

calculated from the block mean µ and its empirical variance s2 as follows:

µ̃ =
1

N

N∑
i=1

q̃i =
1

2m

1

N

N∑
i=1

(qi +m) =
µ

2m
+

1

2
, (8)

s̃2 =
1

N − 1

N∑
i=1

(q̃i − µ̃)2 =
1

4m2

1

N − 1

N∑
i=1

(qi − µ)2 =
s2

4m2
. (9)

Then, to find the optimal block-wise values for α and β we run the Nelder–Mead algorithm

by initializing it with method-of-moments [21] estimates α̂ and β̂ derived from

µ̃ =
α̂

α̂ + β̂
, s̃2 =

α̂β̂

(α̂ + β̂)2(α̂ + β̂ + 1)
. (10)

In the general case, they are

α̂ = µ̃
(µ̃(1− µ̃)

s̃2
− 1
)
, β̂ = (1− µ̃)

(µ̃(1− µ̃)

s̃2
− 1
)
. (11)

To use as little storage as possible, we independently explore the case for quantiles of

a symmetric Beta distribution where α = β. When that assumption is made, the initial

estimates simplify to

10

α̂ = β̂ =
1

8s̃2
− 1

2
. (12)

When α = β the distribution is symmetric and the CDF evaluated after rescaling samples

to [−m,m] is Φr(0) = 0.5. This allows us to compute quantiles similarly to the previous

cases as qi = Φ−1r (pi) with probabilities p = {0, . . . , 0.5, . . . , 1} ensuring 0 is represented as a

bin. Otherwise, probabilities are kept as p = {0, 1
15
, . . . , 14

15
, 1} for simplicity.

Initialization with random parameters or an estimate different from the one outlined

usually prevents convergence to sensible reconstruction errors.

4 Experiments

In order to evaluate the decrease in reconstruction error, an experiment is conducted

with the LLaMA model where all weight matrices for the following seven layer types are

quantized: q proj, k proj, v proj, o proj, up proj, gate proj, and down proj. The stor-

age requirements of each quantization method are computed to assess the potential for error

reduction without exceeding the storage requirements of previous works. Additionally, the

“best” reconstruction is calculated by choosing the distribution with the lowest error for

each block, and its corresponding storage requirements are also quantified.

To assess which of these methods yield real gains in language modeling performance, we

run the recently released LLaMA-2 [22] model on the WikiText-2 [23] dataset. Validation

perplexities for causal language modeling with a context length of 2048 tokens are computed

as follows:

PPL(X) = exp

{
−1

t

t∑
i

log pθ(xi|x<i)
}
, (13)

11

where X = (x0, x1, . . . , xt) is a tokenized text sequence and log pθ(xi|x<i) represents the

log-likelihood of the i-th token in the sequence, according to the language model conditioned

with the preceding tokens x<i. We calculate PPL for the quantized model with optimized

Gaussian and symmetric Beta distribution which demonstrate better reconstruction abilities

from the previous experiment.

5 Results

5.1 Reconstruction Error

64 1024 4096 65536 262144

Block size

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

A
ve

ra
ge

re
co

n
st

ru
ct

io
n

er
ro

r

4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75

Memory usage: bits/weight

2× 101

3× 101

4× 101 Quantization type

N (0, s2)

Beta(α, α)

Beta(α, β)

Student’s t(1)

Student’s t(2)

Student’s t(4)

Student’s t(ν)

NF4

Best

Figure 4: Reconstruction errors for different distributions on LLaMA weights.

Our experiments, illustrated in Figure 4, indicate that quantizing with an optimized

normal distribution significantly reduces reconstruction loss compared to NF4 without ad-

ditional storage. By increasing the block size, the storage requirement for each weight ap-

proaches 4.0 bits, and in that case, distributional quantization scales better than NF4, which

produces reconstruction errors over twice as high. Quantizing with a mixture of distributions

yields further improvements but at the cost of more storage. For example, the naive choice

12

for a “best” distribution per block requires more than 5.75 bits per weight for a block size

of 64. However, as discussed in Appendix F, the difference between reconstruction errors

between distributions for some blocks is negligible, so the one with a lower cost could still be

used. A detailed overview of how each quantization type performs for different block sizes

is given in Appendix E and the count of blocks per optimal distribution in Appendix F.

5.2 Language Modelling

Quantization
Method

Average ‖W −WQ‖F ↓ PPL on WikiText-2 ↓
64 1024 4096 64 1024 4096

NormalFloat4 9.26 10.84 11.86 5.64 5.75 5.83
Optimized Normal (s) 8.89 10.02 10.23 5.66 6.20 7.12
Optimized Normal (δ) 8.31 10.37 10.91 5.62 5.77 5.86
Optimized Beta (α = β) 8.54 10.42 10.88 5.63 5.79 6.12

Table 2: PPL of LLaMA-2 on WikiText-2 and average reconstruction loss for all layers.

Results from the WikiText-2 PPL evaluation show that our distributional quantization

outperforms NF4 with LLaMA-2 for some block sizes. For instance, optimizing the offset for

a Gaussian produces a perplexity of 5.62 compared to 5.64 for NF4.

5.3 Gaussian Case Ablation Study

In the Gaussian case, we further examine why a standard deviation minimizes recon-

struction error yet worsens perplexities. By ablating which layers are quantized, we can

confirm that perplexities are always better for optimizing the offset or using normal float

quantization rather than optimizing the standard deviation. Our hypothesis is that when

q1 and q16 are not explicitly set to −m and m (the absolute maximum value), large improb-

able values are inaccurately represented in quantization bins, impacting the forward pass

13

Quantized Layers NF4 Optimized Normal (s) Optimized Normal (δ)

All 5.640 5.656 5.620
Last layer of each type 5.477 5.706 5.476
Last down proj layer 5.472 5.477 5.471
None 5.467 5.467 5.467

Table 3: PPL of LLaMA-2 with ablated number of quantized layers on WikiText-2.

matrix multiplication. In that case, the difference between logits from an unquantized and

a normally-quantized model should be higher than the difference between logits from an

unquantized and an NF4-quantized model. Formally,

E
x∼D
‖xW − xWNLδ‖F ≤ E

x∼D
‖xW − xWNF4‖F ≤ E

x∼D
‖xW − xWNLs‖F (14)

where D consists of hidden states from an unquantized model treated as input data to the

last layer with weights W, WNF4 when quantized with NF4, or WNL for learned Gaussian.

Eq. (14) holds true after experimental evaluation on WikiText-2 with values 632.9, 670.4,

and 788.5 for the reconstructed matrices WNLδ , WNF4, and WNLs respectively.

6 Discussion and Future Work

In terms of reconstruction error, we are able to outperform NF4 with relatively little

or no storage tradeoffs. In terms of language modeling abilities, we show that achieving

state-of-the-art PPL results is possible with distributional quantization. In addition, it is

especially curious that optimizing the standard deviation s for a normal distribution yields

better reconstruction loss but noticeably worse perplexity. After examination, we found

that the outliers ignored during the minimization of the reconstruction objective might be

significant during forward propagation due to their high magnitude. In contrast, NF4 or

Beta quantization has the absolute maximum value always represented as a bin.

As a current limitation, we recognize that despite outperforming NF4 with our Beta and

14

Gaussian (δ) cases, the gains are limited and lack consistency across some block sizes. Thus,

the immediate next steps that we identify include:

• Exploration of objectives other than reconstruction loss. They might be more strongly

correlated with an increase in language modeling performance.

• Implementation of data-aware distributional quantization. It involves assessing the

importance of weight values through gradient analysis and parameterizing the distri-

butions so that the sensitive values are suitably represented as bins.

• Evaluation of model performance on diverse downstream tasks in addition to pure

PPL. These might include language understanding [24], question answering [25], etc.

7 Conclusions

To the best of our knowledge, this is the first study that investigates the use of quantile

quantization with bins drawn from distributions other than normal. We provide a justifica-

tion for the initial parameters for each distribution and introduce a numerical optimization

method that successfully reduces the reconstruction error in LLMs. It offers improvements

over the current state-of-the-art in quantile quantization with the same storage usage as

NormalFloat4 in the Gaussian case. Further improvements are made by optimizing one or a

few additional parameters per block for blocks following a Beta or Student’s t distribution.

Moreover, this work reports an enhancement in the perplexity of the LLaMA-2 model, re-

leased just in July of 2023, when quantized in small block sizes. We also discuss that lower

reconstruction error doesn’t necessarily equate to improved perplexity and model abilities

and provide a framework to further increase the performance of quantized models in future

work.

15

8 Acknowledgments

I would like to thank my mentors, Prof. Yoon Kim and Han Guo, for the topic suggestion

and their advice throughout the development of the project. Thank you to my tutor Dr.

Jenny Sendova for the continuous feedback on the different versions of the paper and to

Allen Lin, Sally Zhu, AnAn Desimone, Rich Wang, Max Bee-Lindgren, and Donald Liveoak

for formatting. Many thanks to Kenneth Choi, Rumen Dangovski, Peter Gaydarov, and my

last week TA Michael Huang for the editing help. Recognition for the support of Samet

Karaibryamov, Dr. Konstantin Delchev, Todor Kolev (RSI’03), and Acad. Petar Kenderov.

Thank you to the Center for Excellence in Education (CEE), the Massachusetts Institute

of Technology (MIT), and the Research Science Institute (RSI) for giving me the opportunity

to work in this environment. Finally, I would like to express my gratitude to my sponsors -

Prosveta-Sofia Foundation, St. Cyril and St. Methodius International Foundation, MB Con-

sulting, Union of Bulgarian Mathematicians, and Institute of Mathematics and Informatics

at the Bulgarian Academy of Sciences.

16

References

[1] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances
in neural information processing systems, 33:1877–1901, 2020.

[3] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li,
X. V. Lin, et al. Opt: Open pre-trained transformer language models. arXiv preprint
arXiv:2205.01068, 2022.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

[5] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agar-
wal, K. Slama, A. Ray, et al. Training language models to follow instructions with human
feedback. Advances in Neural Information Processing Systems, 35:27730–27744, 2022.

[6] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham,
H. W. Chung, C. Sutton, S. Gehrmann, et al. Palm: Scaling language modeling with
pathways. arXiv preprint arXiv:2204.02311, 2022.

[7] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,
N. Goyal, E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

[8] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B.
Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.

com/tatsu-lab/stanford_alpaca, 2023.

[9] Z. Yao, R. Yazdani Aminabadi, M. Zhang, X. Wu, C. Li, and Y. He. Zeroquant:
Efficient and affordable post-training quantization for large-scale transformers. Advances
in Neural Information Processing Systems, 35:27168–27183, 2022.

[10] Y. Lin, Y. Li, T. Liu, T. Xiao, T. Liu, and J. Zhu. Towards fully 8-bit integer inference
for the transformer model. arXiv preprint arXiv:2009.08034, 2020.

[11] O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat. Q8bert: Quantized 8bit bert. In
2019 Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing-
NeurIPS Edition (EMC2-NIPS), pages 36–39. IEEE, 2019.

[12] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

17

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

[13] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

[14] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323,
2022.

[15] S. Kim, C. Hooper, A. Gholami, Z. Dong, X. Li, S. Shen, M. W. Mahoney,
and K. Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

[16] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer. A sur-
vey of quantization methods for efficient neural network inference. arXiv preprint
arXiv:2103.13630, 2021.

[17] X. Wu. Optimal quantization by matrix searching. Journal of algorithms, 12(4):663–673,
1991.

[18] D. Yoshida. Nf4 isn’t information theoretically optimal (and that’s good). arXiv preprint
arXiv:2306.06965, 2023.

[19] J. A. Nelder and R. Mead. A simplex method for function minimization. The computer
journal, 7(4):308–313, 1965.

[20] M. Baudin. Nelder-mead user’s manual. Consortium Scilab-Digiteo, 2010.

[21] K. O. Bowman and L. Shenton. Estimation: Method of moments. Encyclopedia of
statistical sciences, 3, 2004.

[22] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov,
S. Batra, P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288, 2023.

[23] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. arXiv
preprint arXiv:1609.07843, 2016.

[24] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. Glue: A multi-task
benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

[25] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[26] J. D. Garrett. garrettj403/SciencePlots. Sept. 2021.

18

A Quantization Types Comparison

0 5 10 15 20 25 30

10

12

14

16

18

layer: q proj, block: 64

0 5 10 15 20 25 30
10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

layer: q proj, block: 512

0 5 10 15 20 25 30

15

20

25

30

35

layer: q proj, block: 4096

0 5 10 15 20 25 30

10

12

14

16

18

layer: k proj, block: 64

0 5 10 15 20 25 30

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

layer: k proj, block: 512

0 5 10 15 20 25 30

15

20

25

30

35

40
layer: k proj, block: 4096

0 5 10 15 20 25 30
4

6

8

10

12

layer: v proj, block: 64

0 5 10 15 20 25 30

6

8

10

12

14

layer: v proj, block: 512

0 5 10 15 20 25 30

6

8

10

12

14

16

layer: v proj, block: 4096

0 5 10 15 20 25 30

6

8

10

12

layer: o proj, block: 64

0 5 10 15 20 25 30

6

8

10

12

14

layer: o proj, block: 512

0 5 10 15 20 25 30
6

8

10

12

14

16

18
layer: o proj, block: 4096

4-bit Int

4-bit Int with zero point

4-bit Float (E2M1)

4-bit Float (E3M0)

4-bit Normal Float

4-bit Normal Float (symmetric)

Figure 5: Linear quantization of the LLaMA attention layers with different data types.

19

0 5 10 15 20 25 30
10

12

14

16

18

20

layer: gate proj, block: 64

0 5 10 15 20 25 30

12

14

16

18

20

22

24
layer: gate proj, block: 512

0 5 10 15 20 25 30

14

16

18

20

22

24

26

28

layer: gate proj, block: 4096

0 5 10 15 20 25 30

13

14

15

16

17

18

19

layer: down proj, block: 64

0 5 10 15 20 25 30
14

16

18

20

22

layer: down proj, block: 512

0 5 10 15 20 25 30

16

18

20

22

24

26

28
layer: down proj, block: 4096

0 5 10 15 20 25 30

10

12

14

16

18

20

layer: up proj, block: 64

0 5 10 15 20 25 30

12

14

16

18

20

22

24
layer: up proj, block: 512

0 5 10 15 20 25 30
12

14

16

18

20

22

24

26

28
layer: up proj, block: 4096

4-bit Int

4-bit Int with zero point

4-bit Float (E2M1)

4-bit Float (E3M0)

4-bit Normal Float

4-bit Normal Float (symmetric)

Figure 6: Linear quantization of the LLaMA feedforward layers with different data types.

For comparisons, we implemented zero-point, absmax, and quantile quantization with

various underlying data types - 4-bit integer and 4-bit floating point (3 bits for exponent, 0

for mantissa; 2 bits for exponent, 1 for mantissa; normal float). Figure 5 and figure 6 show

reconstruction error computed over the 32 layers of each layer type in the LLaMA model.

During the development of this project, an error was identified in the codebase of [13], specifically
affecting quantization with block sizes exceeding 1024. This issue impacts both the bitsandbytes and
Huggingface transformers libraries. Upon submitting a bug report along with our own implementation of
FP4 and NF4 quantization for reproducibility, Tim Dettmers, the author of [13], confirmed the significance
of the problem and acknowledged our debugging code snippets. We appreciate his response.

20

B Distribution of Weights in LLMs

−0.10 −0.05 0.00 0.05 0.10
0

5000

10000

15000

20000

25000

30000

layer: q proj

−0.10 −0.05 0.00 0.05 0.10
0

5000

10000

15000

20000

25000

layer: k proj

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06
0

2500

5000

7500

10000

12500

15000

17500

layer: v proj

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06
0

5000

10000

15000

20000

25000

30000

35000

40000
layer: gate proj

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06
0

5000

10000

15000

20000

25000

30000

35000

layer: down proj

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06
0

5000

10000

15000

20000

25000

30000

35000

layer: up proj

Figure 7: The weight distribution of a non-quantized LLaMA-7B [7] model.

C Alternative Gaussian Parameterization

During our work on minimizing the post-quantization reconstruction loss, we derived a

way to optimize the offset δ instead of the standard deviation σ in the Gaussian case if the

quantiles are rescaled in [−1, 1]. This retains the property of always having the absmax

reconstructed exactly which turns out to be important in practice. From Eq. (7) we solve

for δ having the standard deviation s of the weights also rescaled in [−1, 1]:

1

Φ−1(1− δ) = s ⇔ erf−1(1− 2δ) =
1√
2s
, (15)

erf
(1√

2s

)
= 1− 2δ ⇔ δ =

1

2

(
1− erf

(1√
2s

))
. (16)

21

D Nelder-Mead algorithm

Algorithm 1 Nelder-Mead Algorithm

Parameter Initialize:
ρ = 1 {Reflection parameter}, χ = 2 {Expansion parameter}
γ = 0.5 {Contraction parameter}, ψ = 0.5 {Shrinkage parameter}

Initialize: a simplex with vi vertices, i = 1, 2, . . . , d+ 1
Calculate fi = f(vi) for all i
while std(f) > tol do

Sort vi’s such that f1 ≤ f2 ≤ . . . ≤ fd ≤ fd+1

Compute the midpoint of the simplex excluding vd+1: vmid = 1
d

∑d
i=1 vi

Reflection: vr = vmid + ρ(vmid − vd+1) and calculate fr
if fr < f1 then

Expansion: ve = vmid + χ(vr − vmid) and calculate fe
if fe < f1 then

vd+1 = ve
else

vd+1 = vr
end if

else if f1 ≤ fr < fd then
vd+1 = vr

else if fd ≤ fr < fd+1 then
Outside Contraction: vo = vmid + γ(vr − vmid) and calculate fo
if fo < fd+1 then

vd+1 = vo
else

for i = 2, 3, . . . , d+ 1 do
Shrinkage: vi = v1 + ψ(vi − v1)

end for
end if

else
Inside Contraction: vc = vmid − γ(vr − vmid) and calculate fc
if fc < fd+1 then

vd+1 = vc
else

for i = 2, 3, . . . , d+ 1 do
Shrinkage: vi = v1 + ψ(vi − v1)

end for
end if

end if
end while

22

E Detailed Reconstruction Loss Results

64 1024 4096 65536 262144

10

15

20

25

30

35

layer: q proj, 8

64 1024 4096 65536 262144

10

15

20

25

30

35

40

45

layer: k proj, 0

64 1024 4096 65536 262144

7

8

9

10

11

12

13

layer: v proj, 19

64 1024 4096 65536 262144

6

7

8

9

10

11

12

layer: o proj, 8

64 1024 4096 65536 262144

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0
layer: gate proj, 20

64 1024 4096 65536 262144

15

20

25

30

35

40

layer: down proj, 31

64 1024 4096 65536 262144
10

15

20

25

30

35

layer: up proj, 31

N (0, s2)

Beta(α, α)

Beta(α, β)

Student’s t(1)

Student’s t(2)

Student’s t(4)

Student’s t(ν)

NF4

Best

Figure 8: Reconstruction loss across various block sizes when LLaMA layers are quantized
using quantiles from different distributions.

Reconstruction errors for NF4 increase substantially for large blocks due to rescaling into

[−1, 1], with a higher likelihood of the absolute maximum value being an outlier. Quantile

quantization outperforms NF4 in all cases, especially for B > 1024. The Beta distribution is

an optimal choice for B = 64, but α 6= β does not contribute further. Additionally, Student’s

t (ν) does not significantly exceed the simpler optimization of the Normal distribution.

23

F Detailed Breakdown of Distribution Usage

105

106

107

Attention, block size: 64

104

105

106
Attention, block size: 1024

102

103

104

105

Attention, block size: 4096

103

104

Attention, block size: 65536

103

Attention, block size: 262144

N
(0
,s

2
)

B
et

a(
α
,α

)

B
et

a(
α
,β

)

S
tu

d
en

t’
s

t(
1)

S
tu

d
en

t’
s

t(
2)

S
tu

d
en

t’
s

t(
4)

S
tu

d
en

t’
s

t(
ν

)

104

105

106

107

MLP, block size: 64

N
(0
,s

2
)

B
et

a(
α
,α

)

B
et

a(
α
,β

)

S
tu

d
en

t’
s

t(
1)

S
tu

d
en

t’
s

t(
2)

S
tu

d
en

t’
s

t(
4)

S
tu

d
en

t’
s

t(
ν

)

104

105

106

MLP, block size: 1024

N
(0
,s

2
)

B
et

a(
α
,α

)

B
et

a(
α
,β

)

S
tu

d
en

t’
s

t(
1)

S
tu

d
en

t’
s

t(
2)

S
tu

d
en

t’
s

t(
4)

S
tu

d
en

t’
s

t(
ν

)

102

103

104

105

MLP, block size: 4096

N
(0
,s

2
)

B
et

a(
α
,α

)

B
et

a(
α
,β

)

S
tu

d
en

t’
s

t(
1)

S
tu

d
en

t’
s

t(
2)

S
tu

d
en

t’
s

t(
4)

S
tu

d
en

t’
s

t(
ν

)102

103

104

MLP, block size: 65536

N
(0
,s

2
)

B
et

a(
α
,α

)

B
et

a(
α
,β

)

S
tu

d
en

t’
s

t(
1)

S
tu

d
en

t’
s

t(
2)

S
tu

d
en

t’
s

t(
4)

S
tu

d
en

t’
s

t(
ν

)

102

103

104

MLP, block size: 262144

Figure 9: Number of blocks best represented by a distribution.

Figure 9 illustrates the number of blocks in each layer of LLaMA best reconstructed

by each type of distribution. The Attention blocks are from q proj, k proj, v proj, and

o proj layers. The MLP blocks are from the up proj, gate proj, and down proj layers.

We split the blocks into those groups to determine whether different parts of the model align

better with different distributions. The data suggest that there is no substantial difference

between quantizing the Transformer attention weights and the final MLP weights. Further,

we observe that for smaller block sizes such as 64, the Beta distribution seems to contribute

more to the minimization of the objective than other distributions. For larger block sizes,

a normal distribution provides the best reconstruction. Theoretically, the Student’s t(ν)

should always be as effective as Gaussian or superior as it generalizes to it. Nonetheless,

due to the optimizer’s iteration limit, we do not typically observe this in practice, with some

blocks yielding better reconstructions in the Gaussian. However, the differences in the error,

as Appendix E details, are negligible.

24

	Introduction
	Background
	Uniform Quantization
	Non-uniform Quantization
	Block-wise Quantization
	Possible Optimization Methods and Parameterization

	Methods
	Numeric Optimization
	Parametric Assumptions
	Gaussian Case
	Student's t Case
	Beta Case

	Experiments
	Results
	Reconstruction Error
	Language Modelling
	Gaussian Case Ablation Study

	Discussion and Future Work
	Conclusions
	Acknowledgments
	Quantization Types Comparison
	Distribution of Weights in LLMs
	Alternative Gaussian Parameterization
	Nelder-Mead algorithm
	Detailed Reconstruction Loss Results
	Detailed Breakdown of Distribution Usage

