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Abstract

A set of points S in n-dimensional Euclidean space Rn is called a 2-distance set if the set
of pairwise distances between the points has cardinality two. The 2-distance set is called
spherical, if its points lie on the unit sphere in Rn. In Rn there is a finite number of 2-
distance sets with n+ 2 points and an infinite number of 2-distance sets on n+ 1 points and
fewer. We characterize the spherical 2-distance sets with n+ 2 points in Rn.

Summary

A spherical 2-distance set is a set of points in an Euclidean space such that there are only two
distances between the points, and all points lie on a sphere. We determine some properties
of the spherical two distance sets, and we characterize all smallest spherical 2-distance sets.



1 Introduction

The problem of sets with few distances is considered to be naturally emerging in dis-

crete geometry and coding theory. One can view 2-distance sets (a finite set of points in

n-dimensional space, allowing only to possible distances between its elements) as a natural

next subject of study after equiangular lines, and equiangular lines themselves have numerous

applications.

The study of 2-distance sets began in 1947 when Kelly [1] showed that a 2-distance set

in the plane can have at most 5 points. In 1963, Croft [2] showed that a 2-distance set in

R3 can have at most 6 points. Mathematicians became interested in solving this problem

in the more general case Rn. A natural question that arose is what the size of the maximal

2-distance set is. Larman, Rogers, and Seidel [3] found an upper bound on the size of a

2-distance set in Rn that is asymptotically tight, thus resolving this question.

The other extreme case, the minimal 2-distance sets, has also been extensively studied.

There are infinitely many non-isomorphic 2-distance sets with n + 1 points or fewer, so the

smallest interesting case is n+ 2 points. In 1966, Einhorn and Schoenberg [4] (Theorem 2.1)

showed that there is a finite number of 2-distance sets in Rn with n + 2 points and gave a

combinatorial interpretation for the number of such “small” sets.

Motivated by Theorem 2.1, we are interested in characterizing the 2-distance sets whose

points lie on the unit sphere. We call those sets spherical. A previous characterization of

the spherical 2-distance sets was completed in 2012 by Nozaki and Shinohara [5], who gave

a necessary and sufficient condition for a graph to have a representation as a spherical 2-

distance set in some Euclidean space based on Roy’s previous results [6]. The conditions in

[5, Theorem 2.4] involve bulky expressions that use the eigenvalues of the adjacency matrix

and the angles of its eigenvectors with the all-ones vector. In contrast, here we focus on

the “small” spherical graphs (with exactly n + 2 vertices in Rn) and obtain a much cleaner
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necessary and sufficient condition for a graph to have a spherical representation in this case,

only using the eigenvalues of the adjacency matrix and the eigenvalues of its projection onto

a subspace.

Theorem 1.1. Let G be a graph on n+2 vertices whose adjacency matrix AG has eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn+2. Let J be the all-ones matrix and P = I− 1
n+2

J be the projection matrix

onto the subspace orthogonal to the all-ones vector. Then G has a spherical representation

in Rn if and only if the maximum eigenvalue of PAGP is equal to λ2 and the multiplicity

of the eigenvalue λ2 in AG (excluding λ1 if λ1 = λ2) is the same as the multiplicity of λ2 in

PAGP .

The paper is organized as follows. In Section 2, we define a 2-distance set more formally,

introduce the concepts of (spherically) representable graphs, and recall two results from the

literature that we use in the paper. In Section 3, we give four initial conditions for a graph

on n+2 vertices to be representable as a spherical 2-distance set in Rn. In Section 4, we first

rephrase the four conditions from Section 3 in terms of another matrix, and find a formula

for the matrix that depends on the second eigenvalue of the adjacency matrix of the graph.

In Section 5, we further reduce the positive-semidefinite conditions, which we use to prove

Theorem 1.1 in Section 6.

2 Preliminaries

First, we formally define a 2-distance set and some related concepts.

Definition 2.1. A set of points S in Rn is a 2-distance set if

|D| = 2 where D = {||pi − pj|| for pi, pj(6= pi) ∈ S}.

Let D = {α1, α2} such that α1 > α2. Denote by k = α1/α2 > 1 the ratio of S.
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Defining the ratio allows us to consider 2-distance sets only up to scaling. (In this paper,

we consider point sets that are the same under isometries and scaling as equivalent sets.)

Definition 2.2. For a 2-distance set S, we define its associated graph G = G(S) to be a

graph in which every vertex corresponds to a point in S, and two vertices are adjacent if and

only if the distance between their corresponding points in S is α1.

We investigate when a graph has an associated 2-distance set.

Definition 2.3. A graph G is representable in Rn with ratio k > 1 if there exists a 2-distance

set S in Rn with distance ratio k > 1 such that G = G(S) is the associated graph of S.

There are infinitely many non-isomorphic 2-distance sets on at most n + 1 points. For

instance, we can generate infinitely many 2-distance sets by taking a regular simplex on n

points in a hyperplane of dimension n − 1 and an arbitrary point on the line through the

center of the simplex that is perpendicular to the (n − 1)-dimensional hyperplane of the

simplex.

The following theorem gives a necessary and sufficient condition for a graph of size n+ 2

to be representble in Rn, thus proving that there are finitely many 2-distance sets with n+ 2

points. It is a direct implication from the proof of Theorem 1 in [4].

Theorem 2.1 (Einhorn and Schoenberg [4]). Let G be a graph on n+ 2 vertices. If G is a

complete multipartite graph, then G is not representable in Rn for any value of k > 1. If G

is not a complete multipartite graph, then there exists a unique value k > 1 for which G is

representable in Rn with ratio k.

Theorem 2.1 allows us to work with the graph of the 2-distance set, which is a much

simpler structure than the 2-distance set. We also cite the following lemma which was used

to prove Theorem 2.1. It gives us a necessary and sufficient condition for the existence of

points with a fixed set of distances between them in a Euclidean space of dimension k.
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Lemma 2.2 (Schoenberg [7]). Let {mij}ni,j=1 be nonnegative real numbers such that mij =

mji for all i, j and mii = 0 for i = 1, 2 . . . n. There exist points p1, . . . , pn ∈ Rd with ||pi −

pj|| = mij for all i, j if and only if the (n− 1)× (n− 1) matrix B′ with

b′ij = m2
1i +m2

1j −m2
ij

is positive semidefinite (which we denote by B′ � 0) and rank(B′) ≤ d. Moreover, this

configuration is unique up to congruence.

Now we give a definition for a spherical 2-distance set, the structure that we analyze

throughout this paper. A similar definition is used in the literature [8].

Definition 2.4. A 2-distance set in Rn is called spherical if all of its points lie on an (n−1)-

dimensional sphere in Rn. A graph G is called spherical or we say that G has a spherical

representation if there exists a spherical 2-distance set S whose associated graph is G.

We denote by AG the adjacency matrix of a graph G(V,E) and its eigenvalues by λ1 ≥

λ2 ≥ . . . λ|V |.

We have now provided all the necessary preliminaries, and we are ready to begin exam-

ining conditions for 2-distance sets to have a spherical representation.

3 Conditions for spherical 2-distance sets

In this section we give a set of four necessary and sufficient conditions for a graph to

have a spherical representation. First, we define the matrix BG which encodes the pairwise

distances of the corresponding 2-distance set.

Definition 3.1. Given a representable graph G(V,E) on n+ 2 vertices with ratio k, denote
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by BG = BG(k) the (n+ 2)× (n+ 2) matrix with entries

bij =


0, if i = j

−1, if {i, j} 6∈ E

−k2, if {i, j} ∈ E.

Next, Proposition 3.1 gives an exact characterization of graphs with n+2 vertices that are

representable in Rn. Proposition 3.1 is symmetric with respect to all vertices, in contrast with

Lemma 2.2, in which one vertex has to be used as a reference. Denote by 1⊥ the orthogonal

complement of the span of 1 – the all-ones vector.

Proposition 3.1. Let G be a graph on n + 2 vertices. Then G is representable in Rn with

ratio k if and only if the following two conditions hold.

(1) For all vectors w ∈ 1⊥ we have wTBG(k)w ≥ 0.

(2) There exists a nonzero vector w ∈ 1⊥ such that BG(k)w = λ1 for a real number λ.

Proof. We define B′G =
(
I − 1eT1

)
BG

(
I − e11T

)
, which is equivalent to the definition in

Lemma 2.2. Thus, G is representable in Rn if and only if

B′G � 0 and rank(B′G) ≤ n.

We show that these two conditions are equivalent to (1) and (2), respectively.

The condition B′G � 0 is equivalent to vTB′Gv ≥ 0 for all vectors v. This gives us

vT
(
I − 1eT1

)
BG

(
I − e11T

)
v ≥ 0

⇔ wTBGw ≥ 0 where w =
(
I − e11T

)
v.

Note that w1 = −
n∑
i=2

vi, w2 = v2, w3 = v3, . . . , wn+2 = vn+2, so w is a vector in 1⊥. Con-

versely, every vector in 1⊥ can be expressed in this form.

The condition rank(B′G) ≤ n is equivalent to dim null(BG) ≥ 2. Observe that e1 ∈

null(BG), so there exists a vector v independent with e1 such that
(
I − 1eT1

)
BG

(
I − e11T

)
v =

0. This means that there exists w ⊥ 1 such that
(
I − 1eT1

)
BGw = 0, soBGw ∈ null

(
I − 1eT1

)
=
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span(1), thus there exists a real number λ such that BGw = λ1. Conversely, if there exist a

vector satisfying condition (2), then it is in the nullspace of B′G and is independent of e1, so

rank(B′G) ≤ n.

We now consider the conditions for a graph to be spherical. Denote by J the all-ones

matrix.

Lemma 3.2. Let G be a graph on n+ 2 vertices that is representable in Rn with ratio k. It

has a spherical representation with ratio k if and only if the following two conditions hold.

(3) det(xJ +BG) is the zero polynomial.

(4) There exists r0 = r0(BG) ∈ R such that rJ +BG � 0 for all r ≥ r0.

Proof. We first show the only if direction. Suppose that G is a graph on n+ 2 vertices which

can be representable in Rn with ratio k, and its corresponding 2-distance set is spherical.

Take the center O of the sphere and take a point O1 on the line in Rn+1 through O that is

orthogonal to the subspace Rn where G is representable. The distance between every point

from the 2-distance set and O1 is the same and is denoted by x1. Note that we can choose any

x1 ≥
√
r0/2 where r0 is the radius of the circumsphere of the 2-distance set that corresponds

to G. By Lemma 2.2, we see that B′ = 2x21J + BG � 0 for all x1 ≥
√
r0/2, so condition (4)

holds for r ≥ r0, and rank(B′) ≤ n+ 1, i.e., det(B′) = 0. Since det(B′) is a polynomial in x1

which vanishes for all x1 ≥
√
r0/2, it must be the zero polynomial, so condition (3) holds.

We now show the if direction. Suppose that G is representable in Rn with ratio k and

conditions (3) and (4) hold. Take r = r0. Since rJ+BG is positive semidefnite and rank(rJ+

BG) ≤ n + 1, by Lemma 2.2 the 2-distance set corresponding to G is inscribed in a sphere

with radius r in Rn+1 but it also lies on a subspace isomorphic to Rn, so it lies in the

intersection of the sphere and an n-dimensional hyperplane, which is precisely a sphere in

Rn. This means that the 2-distance set corresponding to G is spherical.
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By combining Proposition 3.1 and Lemma 3.2, we obtain a set of four conditions that is

necessary and sufficient for G to be representable in Rn with ratio k using only the matrix

BG.

(1) For all vectors w ∈ 1⊥ we have wTBGw ≥ 0.

(2) There exists a nonzero vector w ∈ 1⊥ such that BGw = λ1 for a real number λ.

(3) det(xJ +BG) is the zero polynomial.

(4) There exists r0 = r0(BG) ∈ R such that rJ +BG � 0 for all r ≥ r0.

We first simplify condition (3) as follows.

Lemma 3.3. If a graph G on n + 2 vertices with a distance ratio k satisfies condition (2),

then (3) holds if and only if det(BG) = 0.

Proof. If condition (3) holds, then det(xJ +BG) ≡ 0, as sought.

Now assume that det(BG) = 0. Thus, there exists a vector u 6= 0 such that BGu = 0.

From (2), there exists w ∈ 1⊥ such that BGw = λ1. It therefore suffices to show that for

every x, there exists a nonzero vector v such that (xJ +BG)v = 0.

First, if λ = 0, then (xJ +BG)w = 0 for every x. Otherwise, take β = −x〈u,1〉
λ

. Then,

(xJ +BG)(u+ βw) = xJu+ βxJw +BGu+ βBGw

= x〈u,1〉1 + βx0 + 0 + βλ1

= (x〈u,1〉+ βλ)1 = 0.

Note that u+ βw 6= 0 because otherwise u and w would have been collinear, which gives us

Bw = 0, so λ = 0. Thus, for every x there exists a nonzero vector v such that (xJ+BG)v = 0,

as needed.

We let det(BG) = 0 be condition (3′).
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4 Second eigenvalue of the adjacency matrix

From Lemma 3.3, we can find a formula for BG which does not depend on the ratio of

the 2-distance set. Conversely, if this formula for BG holds, then we prove that condition (1)

implies conditions (2) and (3′).

First, we transform the matrix BG to a new matrix BG which is more closely related to

the adjacency matrix AG and rewrite conditions (1)-(4) in terms of BG.

Definition 4.1. Denote by BG the matrix 1
k2−1(BG + J) that has the form 1

k2−1I − AG.

Conditions (1) and (2) for the matrix BG become the following.

(1) For all w ∈ 1⊥ we have 0 ≤ wTBGw.

(2) There exists a nonzero vector w ∈ 1⊥ such that BGw = λ1 for some real number λ.

These are clearly equivalent to the original conditions (1) and (2) because BGw = 1
k2−1(BG+

J)w = 1
k2−1BGw for all w ∈ 1⊥.

Condition (3) is transformed to

(3) det(xJ +BG) ≡ 0,

but this is equivalent to the original condition (3) by a change of variable:

det

(
xJ +

1

k2 − 1
(BG + J)

)
=

(
1

k2 − 1

)n+2

det
(
(x(k2 − 1) + 1)J +BG

)
.

By the same proof as in Lemma 3.3 we see that this is also equivalent to condition (3′) for

BG, i.e. det(BG) = 0.

Condition (4) becomes the following:

(4) There exists r0 ∈ R such that for all r ≥ r0 we have rJ +BG � 0.

This is equivalent to BG + (r(k2 − 1) + 1)J � 0 for sufficiently large r, which is the same as

the original condition (4) (for BG).
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We now find a formula for BG in terms of the second eigenvalue of the adjacency matrix.

This also gives us a formula for BG that does not depend on k.

Lemma 4.1. Let G be a graph on n + 2 vertices. Suppose that it satisfies conditions (2),

and (3) for some k > 1, then BG = I − 1
λ2
AG − J .

Proof. Let m = 1
k2−1 , so BG = mI − AG. By Lemma 3.3, det(BG) = 0, so there exists an

eigenvector v of AG that has eigenvalue m = λi for some i. By condition (1), xTBGx ≥ 0 for

x ∈ 1⊥ which is equivalent to xTAGx ≤ mxTx, i.e., xTAGx
xT x

≤ m for every x ∈ 1⊥. So, by the

Courant–Fischer–Weyl min-max [9] principle we have

λ2 = min
U

dim(U)=n−1

{
max
x∈U

xTAGx

xTx

}
≤ max

x∈1⊥

xTAGx

xTx
≤ m.

By condition (2), there exists a vector x1 ∈ 1⊥ such that xT1 (mI−AG)x1 = 0 or equivalently

m =
xT1 AGx1
xT1 x1

. But m = λi for some i, so m ≤ λ1.

If λ1 = λ2, then m =
xT1 AGx1
xT1 x1

≤ λ1 = λ2 by the min-max principle.

If λ1 > λ2, then v1 6∈ 1⊥ because λ1’s eigenvector v1 has nonnegative coordinates. Since

xTAGx
xT x

= λ1 holds if and only if x ∈ span(v1) and x1 6∈ span(v1), so m < λ1 thus m ≤ λ2.

Therefore λ2 ≤ m ≤ λ2, so m = λ2. Undoing the transformations of BG, we obtain

BG = I − 1
λ2
AG − J , as needed.

This gives us a formula for k in terms of λ2.

Corollary 4.2. Given graph G on n + 2 vertices. If G is spherical, then the distance ratio

k =
√

1
λ2

+ 1. (In particular, this implies that λ2 > 0.)

Proof. From the proof of Lemma 4.1, we have 1
k2−1 = m = λ2, so the distance ratio k =√

1
λ2

+ 1.

Using Lemma 4.1 we can prove that one of the eigenvectors of λ2 is in 1⊥.

Lemma 4.3. Let G be a graph on n + 2 with ratio k that satisfies conditions (1), (2), and

(3). There exists an eigenvector v2 of λ2 that is orthogonal to 1.
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Proof. Let v1 be an eigenvector of λ1 and v2 be an eigenvector of λ2 such that 〈v1, v2〉 = 0

and let ||v1|| = ||v2|| = 1. The subspace span(v1, v2) has dimension 2, so it intersects 1⊥ in a

line or a plane. This means that there exist real numbers α and β such that αv1 + βv2 ∈ 1⊥

(where α and β are not both equal to 0). The matrix BG = λ2I − AG by Lemma 4.1, so it

has v2 in its nullspace. By condition (1),

0 ≤ (αv1 + βv2)
TBG(αv1 + βv2)

= α2vT1 BGv1 + β2vT2 BGv2 + αβ(vT1 BGv2 + vT2 BGv1)

= α2(λ2v
T
1 v1 − vT1 AGv1) + β2vT2 BGv2 + αβvT1 BGv2 + αβ(vT1 BGv2)

T

= α2(λ2v
T
1 v1 − vT1 AGv1)

= α2(λ2 − λ1).

We have α2(λ2 − λ1) ≤ 0. Since α2(λ2 − λ1) ≥ 0 by condition (1), which means that either

λ1 = λ2 or α = 0. In the first case λ2’s eigenspace has dimension at least 2, so there is a

nonzero intersection with 1⊥, so we ca set v2 ∈ 1⊥. In the second case we have βv2 ∈ 1⊥,

and β 6= 0, so v2 ∈ 1⊥.

From the proof of Lemma 4.3, we can see that the eigenspace of λ2 is in 1⊥, unless λ1 = λ2

in which case we can choose the eigenvectors of λ2, so that only the eigenvector of λ1 is not

in 1⊥.

Corollary 4.4. If G is a graph with ratio k that satisfies conditions (1), (2), and (3) then if

λ1 > λ2, all eigenvectors of λ2 are in 1⊥, and if λ1 = λ2, then all eigenvectors but one can

be chosen to be in 1⊥.

Now, we are ready to prove that if condition (1) holds for BG = λ2I−AG, then conditions

(2) and (3) also hold.

Lemma 4.5. Given a graph G on n + 2 vertices and BG = λ2I − AG. If for every w ∈ 1⊥

wTBGw ≥ 0, then conditions (2) and (3′) are satisfied.
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Proof. By the proof of Lemma 4.3, if condition (1) is true for the matrix BG = λ2I − AG,

then the eigenvector v2 of the second largest eigenvalue is in 1⊥. From this we can deduce

that BGv2 = 0, which implies both conditions (2) and (3′).

5 Reduction of the positive-semidefinite conditions

In this section we simplify condition (4). Lemma 5.2 reduces condition (4) to condition (1)

and a much weaker condition (5). To do this, we use condition (1) to reduce condition(4) to

the existence of an upper bound on
(1TAGv)2

λ2vTv − vTAGv
for v ∈ 1⊥. Lemma 5.1 gives a necessary

and sufficient condition for the existence of this bound.

Lemma 5.1. Let G be a graph on n+ 2 vertices such that BG = λ2I −AG, and BG satisfies

condition (1), and let V be a subspace of 1⊥. There exists a real number r such that

r(n+ 2)(λ2v
Tv − vTAGv) ≥ (1TAGv)2 for every v ∈ V (1)

if and only if 1TAGv = 0 for all vectors v ∈ V such that λ2v
Tv = vTAGv.

Proof. The forward direction is straightforward.

For the reverse direction, we induct on the dimension of V . The base case dim(V ) = 0 is

trivial.

For the inductive step, assume that V has dimension at least one and that the statement

hold for all subspaces of 1⊥ with lower dimension. Divide both sides of inequality (1) by vTv

to obtain

r(n+ 2)

(
λ2 −

vTAGv

vTv

)
≥ (1TAGv)2

vTv
.

By Cauchy-Schwartz’s inequality, we can bound the absolute value of the right-hand side∣∣∣ (1TAGv)
2

vT v

∣∣∣ ≤ ||1TAG||2. Denote by

f(v) =

(
λ2 −

vTAGv

vTv

)
.

Let L = inf
v∈V
v 6=0

f(v). Note that L ≥ 0 by condition (1). If L > 0, the inequality is true for
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every r ≥ ||1TAG||2
(n+2)L

. If L = 0, then as f is invariant under scaling, so L is also the infimum

of f on the unit sphere, which is compact. Therefore, this infimum is achieved, i.e., there

exists a vector w such that f(w) = 0. By the inductive hypothesis the inequality holds for

all v ∈ V ∩ span(w)⊥. If v is not perpendicular to w, by scaling v we can write v = w + εx

where ||x|| = 1 and x ⊥ w. The inequality becomes

r(n+ 2)(λ2 + λ2ε
2 − wTAGw − 2εxTAGw − ε2xTAGx) ≥ (1TAGw + ε1TAGx)2

r(n+ 2)(λ2ε
2 − 2εxTAGw − ε2xTAGx) ≥ (ε1TAGx)2. (2)

Inequality (2) is a quadratic inequality in ε with zero constant term, so the linear term

should also be zero, i.e., xTAGw = 0. Going back to inequality (2) and dividing by ε2 we get

r(n+ 2)(λ2 − xTAGx) ≥ (1TAGx)2

for x ∈ V ∩span(w)⊥ that has lower dimension than V , so the inductive step is completed.

We are now equipped to simplify condition (4). We prove that it is equivalent to condition

(1) combined with a new condition (5).

Lemma 5.2. A graph G on n + 2 vertices is spherical if and only if wTBGw ≥ 0 for all

vectors w ∈ 1⊥ where BG = λ2I − AG, and

(5) 1TAGw = 0 for all vectors w ∈ 1⊥ such that wTBGw = 0.

Proof. We can easily see that condition (4) implies condition (1), so if we know that (4)

holds for the matrix BG = λ2I − AG, then by Lemma 4.5 we also have conditions (2) and

(3), so G has a spherical representation.

Thus, we need to check that condition (1) combined with the fact that 1TAGw = 0 for

all vectors w ∈ 1⊥ such that λ2w
Tw = wTAGw is equivalent to condition (4).

Every vector u can be expressed as α1 + βv where v ∈ 1⊥. So, condition (4) states that

for all α, β, v and sufficiently large r

0 ≤ (α1 + βv)T (rJ + λ2I − AG)(α1 + βv)

= r(α1 + βv)TJ(α1 + βv) + (α1 + βv)T (λ2I − AG)(α1 + βv).
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As span(J) = span(1), the right-hand side expression is equal to

α2r(n+ 2) + (α1 + βv)T (λ2I − AG)(α1 + βv)

= α2r(n+ 2) + λ2(α1 + βv)T (α1 + βv)− (α1 + βv)TAG(α1 + βv)

= α2r(n+ 2) + λ2α
2(n+ 2) + λ2β

2vTv − (α1 + βv)TAG(α1 + βv)

= α2r(n+ 2) + λ2α
2(n+ 2) + λ2β

2vTv − α21TAG1− β2vTAGv − 2αβ1TAGv

= α2
(
λ2(n+ 2)− 1TAG1 + r(n+ 2)

)
− 2αβ1TAGv + β2(λ2v

Tv − vTAGv).

If α = 0 this becomes condition (1).

Assume that α 6= 0. The first two terms in the coefficient of α2 are constants, so we can

ignore them and increase r by a constant. So, we want

α2r(n+ 2)− 2αβ1TAGv + β2(λ2v
Tv − vTAGv) ≥ 0.

Thus the discriminant of the quadratic polynomial should be non-positive. That is

r(n+ 2)(λ2v
Tv − vTAGv) ≥ (1TAGv)2

for sufficiently large r, which reduces the lemma to Lemma 5.1.

By condition (5), for all w ∈ 1⊥ such that wTBGw = 0 we have AGw ∈ 1⊥. It turns

out that if conditions (1) and (5) hold simultaneously, then a stronger condition is true

AGw = λ2w for all w ∈ 1⊥ such that wTBGw = 0. Therefore all vectors for which equality

holds in condition (1) are eigenvectors of AG with eigenvalue λ2, i.e., null vectors of BG.

Lemma 5.3. Let G be a graph on n + 2 vertices. Then G has a spherical representation if

and only if condition (1) holds for BG = λ2I − AG, and for every vector w ∈ 1⊥ such that

wTBGw = 0 we have BGw = 0.

Proof. By Lemma 5.2, it suffices to show that if wTBGw = 0, then AGw ∈ 1⊥ is equivalent

to BGw = 0. From the proof of Lemma 5.1 we know that xTAGw = 0 for all x ∈ 1⊥ and

x ⊥ w an thus AGw ∈ span(1, w). Therefore AGw ∈ span(w), so w is an eigenvector of AG.

If its eigenvalue is λ, then

0 = λ2w
Tw − wTAGw = (λ2 − λ)wTw.
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This means that λ = λ2, so BGw = λ2w−AGw = 0. Thus if equality holds in condition (1),

then BGw = 0. On the other hand, if BGw = 0, then λ2w−AGw = 0, so 1TAGw = λ21
Tw = 0

which is equivalent to wTBGw = 0 by Lemma 5.2.

6 Proof of the main theorem

We now use Lemma 5.3 to prove our main theorem.

Proof of Theorem 1.1. Let the eigenvalues of PAGP be µ1 ≥ µ2 ≥ · · · ≥ µn+1 and 0 where

0 corresponds to the eigenvector 1. Suppose that the maximum eigenvalue of PAGP is λ2.

The matrices PAGP and PBGP have the same set of eigenvectors. Therefore the spectrum

of PBGP is the set λ2 − µ1, λ2 − µ2, . . . , λ2 − µn+1, 0. Thus all eigenvalues of PBGP are

nonnegative, so condition (1) holds for BG. Conversely, if condition (1) holds, then µ1 ≥ λ2.

Furthermore, by Lemma 4.5, conditions (2) and (3) hold. So, by Lemma 4.3, there is an

eigenvector with an eigenvalue λ2 of AG such that v2 ∈ 1⊥, thus v2 is an eigenvector of

PAGP and PBGP , so µ1 ≥ λ2. Thus µ1 = λ2.

Now, by Lemma 5.3, we have to prove that if we assume condition (1) holds for BG, then

the following two conditions are equivalent.

(a) The multiplicity of λ2 in AG (excluding λ1 if λ1 = λ2) is equal the multiplicity of λ2 in

PAG.

(b) We have wTBGw = 0 if and only if BGw = 0 for all w ∈ 1⊥.

Condition (1) holds for BG, so by Lemma 4.5, conditions (2) and (3) hold, thus Corol-

lary 4.4 holds and every eigenvector of λ2 (except the eigenvector of λ1 when λ1 = λ2) is also

an eigenvector of PAGP , thus the multiplicity of λ2 in AG (excluding λ1 when λ1 = λ2) is at

most the multiplicity of λ2 in PAGP . By condition (1) wTBGw = 0 if and only if w is an null

vector of PBGP , i.e., an eigenvector of λ2 in AG. So, if wTBGw = 0 is true only if BGw = 0,
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i.e., w is an eigenvector of λ2 in AG, then the the multiplicity of λ2 in AG (excluding λ1

when λ1 = λ2) is at least the multiplicity of λ2 in PAGP , so they are equal. The reverse also

holds.

We also give an equivalent formulation of Theorem 1.1 using the Cauchy interlacing

theorem, which gives a more intuitive understanding of what Theorem 1.1 means.

Theorem 6.1 (Cauchy interlacing theorem [10]). Let A be a symmetric n × n matrix and

B be an m×m matrix with B = PAP ∗ where P is an orthogonal projection onto a subspace

of dimension m. Then if the eigenvalues of A are α1 ≥ α2 ≥ · · · ≥ αn and the eigenvalues

of B are β1 ≥ β2 ≥ · · · ≥ βm, then for all j ≤ m

αj ≥ βj ≥ αj+n−m.

In our case, if the eigenvalues of PAGP are µ1 ≥ µ2 ≥ . . . µn−1, then

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λk ≥ µk ≥ λk+1 ≥ · · · ≥ λn.

Theorem 1.1 states that µ1 = λ2 and µk < λk = λ2 where λk+1 < λk = λ2.

If G is a regular graph, then the eigenvector of the first eigenvalue is 1, thus µi = λi+1

for i = 1, 2 . . . , n− 1 which clearly satisfies Theorem 1.1. We state the following remark.

Corollary 6.2. If G is a regular graph on n + 2 vertices that is not complete multipartite,

then G has a spherical representation in Rn.

7 Future developments

We would like to further investigate if other graphs, similarly to regular graphs, satisfy

Theorem 1.1. We plan to work on fining an asymptotic formula for the density of the spherical

graphs compared to all representable graphs. Continuing our work on characterizing “small”

2-distance sets, the next logical steps are characterizing the 2-distance sets with n+3 points.
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We could also analyze 2-distance sets with other imposed conditions, such as radial and

rotational symmetry.

8 Practical Takeaways

Characterizing the “small” spherical 2-distance sets helps us understand the general

structure of the 2-distance sets, and in a broader context k-distance sets. Using Theorem 1.1,

we can provide a fast algorithm with complexity of Θ(n2.3729) (i.e. the complexity of the

most efficient algorithm for matrix multiplication at the moment) for testing if a graph has

a spherical representation. The algorithm can be used to enumerate spherical 2-distance

sets. We managed to enumerate all spherical 2-distance sets with at most seven points. The

density of the spherical 2-distance sets compared to all 2-distance sets for dimensions 2,3,4,5

are 2/6, 7/27, 42/145, 188/1029, respectively.

Dimension n 2 3 4 5
Number of spherical 2-distance sets 2 7 42 188
Number of 2-distance sets 6 27 145 1029
Fraction of 2-distance sets that are spherical 0.33 0.26 0.29 0.18
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