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Abstract

The precise alignment of light sources with detectors or other sources poses a challenge in
numerous optics experiments. For instance, interferometry experiments often demand light
rays to be nearly parallel to observe interference effects. Furthermore, the modern growth of
quantum optics, which utilizes very low levels of light such as single photons, emphasizes the
importance of perfectly aligned light sources. This study specifically focuses on aligning a
laser beam into a fiber optic cable to minimize power losses and maximize coupling efficiency.
Currently, the alignment of light sources relies on the manual and time-consuming process
known as “beam-walking,” which involves using one’s hands to fine-tune two mirrors to guide
a light beam to a specific location and angle. Not only is a precise manual beam-walk very
time-consuming, but, in the case of coupling efficiency, it is also susceptible to local maxima
trapping or overshooting the true global maximum due to the imprecision of the human hand.
In this study, we present an automated setup using stepper motors to precisely align and
couple a laser beam into a fiber optic cable to maximize coupling efficiency. The setup utilizes
a modified gradient descent algorithm with a variable learning rate to accurately converge
to the maximum, with additional stochastic elements to prevent local maxima trapping. We
show that such an automated setup achieves a 4 − 5% increase in coupling efficiency in a
4− 5 hour time frame for a single-axis optimization. Moreover, with the integration of other
degrees of freedom, as well as highly precise industrial motors and measuring devices, the
efficiency and time consumption can be improved further. Ultimately, the automation of the
laser alignment process has tremendous implications, as it will allow for greater precision
and efficiency in various optical experiments.

Summary

Laser alignment plays a critical role in various optical experiments, from ensuring parallel
light beams in interferometry to detecting single photons in quantum optics. This study
specifically focuses on aligning and coupling a laser beam into a fiber optic cable to minimize
power losses, which improves signal transmission and enhances optical communication. Here,
we present an automated system to perform such an alignment, achieving a 4− 5% increase
in coupling efficiency in a 4− 5 hour time frame for a single-axis optimization.



1 Introduction

The alignment of laser beams plays a crucial role in numerous optics experiments and

has various applications, such as making laser beams collinear in interferometry [1, 2] and

minimizing power losses when coupling a laser beam into an optical fiber [3, 4]. Furthermore,

with the modern growth of quantum optics, which utilizes experiments involving extremely

low light levels such as single-photon generation [5, 6, 7], the alignment of light sources into

detectors is becoming even more significant. This study specifically focuses on aligning a

laser beam into a fiber optic cable to minimize power losses and maximize coupling efficiency.

Maximizing efficiency is important because it improves signal transmission, enabling more

accurate and sensitive measurements in optical experiments and communications [8, 9].

Traditionally, the alignment of lasers is done through a manual process known as “beam-

walking,” which uses two adjustable mirrors to guide a laser to a specific point at a specific

angle (refer to Figure 1) [10]. However, this process is laborious and time-consuming, and

since it misses many possible mirror angles, it does not necessarily find the optimal alignment.

Figure 1: Beam-Walk: Two mirrors each with tip and tilt adjustors (indicated by θ and ψ
on the first mirror) are used to deflect an incoming laser beam (red line) [11].
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At the same time, machine learning (ML) is becoming more prominent in optical physics,

and in the past decade, ML has assisted in various experiments from computation imaging

and super-resolution [12, 13] to optical communication and networking [14, 15]. However,

little research has been done on the applications of machine learning to the automation of

beam-walking, despite the potential to achieve much more accurate laser alignments.

In this study, we propose an automated system, using cheap and open-source control

electronics and off-the-shelf optomechanical components, utilizing ML techniques to align

and couple a laser beam into a fiber optic cable while maximizing coupling efficiency. With

results from this automated system, we can make comparisons with other methods of beam-

walking—for instance, manual beam-walking or physics-informed models such as ray-tracing.

Such comparisons are crucial because the ability to significantly increase coupling efficiency

while maintaining a reasonable duration of automation will have tremendous implications

on the field of optics, as it will facilitate improved transmission of light power and lead to

substantial time savings in various optical experiments.

2 Background

2.1 Mirror Adjustment

Of particular importance in this paper is mirror adjustment within the beam-walking

setup. As shown in Figure 2, the two knobs, referred to as the pitch and yaw, control the

mirror’s angle to the y− and x−axis, respectively. In other words, this means that the pitch

adjusts the reflected beam in the vertical direction and the yaw adjusts it in the horizontal

direction, which makes it easy to direct the reflected beam to a specific location.
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Figure 2: Diagram of the knobs and corresponding adjustments on a mirror [16].

Because the beam-walking setup contains two mirrors, there are four degrees of freedom

(one for each knob). Realistically, there is coupling between the pitch and yaw axes, so the

degrees of freedom are not independent.

2.2 Stepper Motors

To automate the adjustment of the mirrors, we connect each mirror knob to a stepper

motor. The physical setup of the motors is shown in Figure 3.

Figure 3: Physical setup of the motors: 3D Optix Drawing (left) and actual setup (right).
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The smallest degree step that our motor can turn is 0.1766◦. For the rest of the study,

the data uses steps to characterize the angular deviation of a motor and mirror knob. Issues

with the stepper motors, such as hysteresis, are discussed in Section 6.

2.3 Initial Alignment and Automated Setup

The automated method that we will present to maximize coupling efficiency requires first

that the mirrors are (a) manually coarsely aligned and (b) manually beam-walked. Note,

however, that the beam-walk in this case does not need to be very precise and is therefore

much quicker than a traditional, precise manual beam-walk. In fact, the only reason why

a manual beam-walk is necessary is to register a non-zero power reading from the detector

fiber optic cable (see Figure 4). Furthermore, this beam-walk only needs to be performed

once. Even with potential mirror and thermal drifts over time [17, 18], the deviations would

be so small that simply running the automated algorithm again would realign the setup.

To begin a coarse alignment, position two laser sources, coupled into fiber optic cables

and collimated, i.e. the light rays are parallel and not diverging, by lenses with two mirrors

(similar to Figure 1) so that the laser paths are nearly coincident. Then, a coarse align-

ment can be performed by slightly adjusting the mirror angles using the knobs described in

Section 2.1. See [11] for a coarse alignment algorithm.

To perform the manual beam-walk, replace one of the laser sources with a detector to

measure the power output. The setup is similar to Figure 4, but without the stepper motors

attached to the mirror knobs. In our setup and in the rest of this study, “Mirror 1” refers to

the mirror closer to the detector. Refer to Appendix A for a beam-walk algorithm.

Finally, Figure 4 shows a diagram of the automated setup. Note that in the physical

system, there would actually be four stepper motors, one for each mirror knob.

Additionally, see Figures 5 and 6 for details about the motors and voltage sensor.
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Laser Source

Fiber Optic Cable
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Figure 4: Automated Setup: Laser beam (red line) “walked” into a detector by using
automated stepper motors attached to the mirror knobs. The detector and fiber optic cable

are connected to a power meter to allow for coupling efficiency calculation.

Figure 5: Motors are controlled by a Raspberry Pi, controller, and driver connected in series.

Figure 6: Automatic voltage measurement: Sensor draws voltage from the power meter and
sends information to the Raspberry Pi via the controller.
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3 Methods

3.1 Single-Knob Optimization

Our first goal is to automate a single-knob optimization, i.e. automate the turning of a

single mirror knob to maximize coupling efficiency. It is traditionally known that the coupling

efficiency, or alternatively the output power, follows a Gaussian distribution with respect to

the angular displacement of a single mirror knob [19].

We can also verify this experimentally using our automated setup by sweeping through

angles of Mirror 1’s pitch and plotting the measured voltages. The result is shown below.
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Figure 7: Graph of measured voltage vs. Mirror 1 Pitch Steps through brute force sweep.

Our experimentally measured data matches relatively well to the theoretically expected

Gaussian distribution. More importantly, the data demonstrates that the graph of Measured

Voltage vs. Mirror 1 Pitch Step for the single mirror knob is a single-peak maximum, sug-

gesting that we can use a modified ML gradient descent algorithm [20] to locate and measure
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this single maximum. Refer to Appendix B for a general algorithm outline.

Figure 8 shows the results of running our gradient descent algorithm on our setup from

two different starting angles. Note that the background Gaussian distributions are slightly

different because two different sweeps were run to make sure that coupling in other axes

did not affect our algorithm. It is evident that our algorithm properly converges near the

maximum of the Gaussian, with small deviations (which are explained in Appendix B).
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Figure 8: Gradient descent algorithm attempting to find the maximum measured voltage.
The blue points represent the Gaussian distribution found via a sweep, and the red points

and lines represent consecutive steps made by our algorithm. Initial conditions:
θstart = 200 steps, α = 100000 (left); θstart = −200 steps, α = 100000 (right).

3.2 Single-Axis Optimization

Now we move on to a single-axis optimization, i.e. using two motors connected to the

“pitch” mirror knobs to optimize the y-axis coupling. First, we find the general shape of the

3D plot of Measured Voltage vs. Motor 1 and 2 Pitch Angles.

To determine the shape theoretically, we use the Zemax ray tracing software, which is

the industry-standard modeling system for optical experiments [21, 22, 23]. In the software,

we input a general beam-walking setup that contains several specifics from our actual setup,
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such as the collimating lenses used. Note that the goal of using Zemax is solely to obtain the

general shape of a 2D map; in particular, the setup and map do not need to be extremely

precise. See Appendix C for the Zemax setup used.

To get the 2D map, we take “slices” for Mirror 1 Pitch Steps and sweep over a large

range of Mirror 2 Pitch Steps. Then, we graph it against the coupling efficiency calculated

by the Zemax POP Function [24, 25]. Note that the coupling efficiency is proportional to the

measured output voltage, since the input laser voltage and power is assumed to be constant.

The results are shown in Figure 9 below.
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Figure 9: Zemax (theoretical) plots of Coupling Efficiency vs. Mirror 1 and 2 Pitch Angles
by brute force sweep: 3D meshplot (left) and colormap (right).

First, observe that the cross-sections of the 3D meshplot are jagged peaks. This does not

match with what we would physically expect; since we are sweeping through the mirror angles

continuously, we should see a smooth 3D surface. In fact, the jaggedness arises inherently

from the amount of sampling done by the Zemax software, which is limited by our computing

power. For this reason, we cannot draw much information from these cross-sections.

Another feature that is particularly prominent is the linear nature of the peaks of these

cross sections. This feature is seen clearly in the colormap in Figure 9 by looking at the points

with maximum voltage (the red points). The points appear to fit a linear relationship, with
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several discontinuities due to the slices made in the Mirror 1 Pitch Step (consecutive slices

are taken 300 steps apart). From this, we may hypothesize that, experimentally, the 3D map

has voltage peaks that lie roughly on a line.

To verify this feature experimentally, we again take slices for fixed Mirror 1 angles and

sweep over Mirror 2 angles. To do this efficiently, for each slice, we maintain a sliding window

of “interesting” Mirror 2 angles i.e. angles which give us a non-zero reading. Then, as we

move through the slices, we only have to scan angles within the vicinity of the sliding window.

Doing this, we obtain the 3D plots shown below.

Figure 10: 3D mapping of Measured Voltage vs. Mirror 1 and 2 Pitch Steps.

Then, creating a colormap as well as a linear plot of the Mirror 1 and 2 Pitch Steps where

the voltages are maximum, we obtain the plots shown in Figure 11.

The plots suggest that, generally, the voltage peaks do indeed lie on a line, which matches

our theoretical expectation. However, in the linear plot, there are sharp discontinuities around

Mirror 1 Pitch = −1450 steps and 1700 steps. But under closer inspection, these disconti-

nuities are due to lower-order optical effects and can therefore be ignored, as their maxima

are negligible compared to the global maximum. Refer to Appendix D for more details.

Thus, ignoring these discontinuities, we can calculate the primary gradient of the voltage

peaks. This is shown by a red line (ranging from −1450 to 1650 steps) in the linear plot in
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Figure 11: Colormap of measured voltages (left) and linear plot between Mirror 1 and
Mirror 2 Pitch Steps for voltage peaks (right).

Figure 11. The equation of the least-squares regression line is

Mirror 2 Pitch Step = −1.024 · (Mirror 1 Pitch Step) + 62.39 (1)

The linear nature of the voltage peaks allows us to effectively reduce this 2D optimization

problem into one dimension. In particular, we can use a similar 1D gradient descent as before,

but instead always move along the peaks by using the measured slope.

For the sake of implementation, we approximate the slope (−1.024) to be −1, i.e. for

every change in Mirror 1’s Pitch we change Mirror 2’s Pitch by an equal but opposite value.

Then, every time we travel along this slope, we perform a small sweep of Mirror 2’s Pitch to

locate the true peak (since there is some error in the slope).

Additionally, since there are some local maxima along the envelope of the voltage peaks

on the primary gradient (see Figure 10), we need to incorporate stochastic elements into our

algorithm to prevent local maxima trapping. To do this, we randomly choose five starting

points (within−1200 and 1200 Mirror 1 Pitch steps of the initial position, which will typically

be the position of the initial hand alignment). Then, we perform our gradient descent from
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each point and take the maximum at the end. To further increase the rate of convergence to

the global maximum, the user can input more starting points.

Finally, see Appendix B for an appropriate learning rate. The results of running the

algorithm for two different starting alignments are shown in the following section.

4 Results

Here, we show the results of running our gradient descent algorithm on two separate

starting alignments. For each of the alignments, the gradient descents starting from different

random Mirror 1 Pitch Steps are depicted in different colors. Furthermore, once our algorithm

finds where the global maximum is roughly located, it performs a small 2D sweep in the

vicinity to find the true maximum.
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Figure 12: Trial 1: Initial hand alignment gives power output 77.1 µW. The maximal
convergence point from the algorithm is at approximately Mirror 1 Pitch = −67 steps.

Automated system’s power output: 80.3 µW, Time of duration: 4 hours.
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Figure 13: Trial 2: Initial hand alignment gives power output 74.6 µW. The maximal
convergence point from the algorithm is at approximately Mirror 1 Pitch = 97 steps.

Automated system’s power output: 78.3 µW, Time of duration: 5 hours.
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Figure 14: Trial 3: Initial hand alignment gives power output 80.1 µW. The maximal
convergence point from the algorithm is at approximately Mirror 1 Pitch = −190 steps.

Automated system’s power output: 84.0 µW, Time of duration: 4 hours.
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We can summarize our results in the following table:

Trial # PManual (µW) PAutomated (µW) % Gain Time of Automation
1 77.1 80.3 4.15% 4 hrs
2 74.6 78.3 4.96% 5 hrs
3 80.1 84.0 4.87 % 4 hrs

In the table, the % Gain is calculated by

% Gain =
PAutomated − PManual

PManual

(2)

which represents the percent increase in the power output. Since the laser source also has a

constant power input, % Gain also represents the percent increase in the coupling efficiency.

5 Conclusion

The results suggest that, on average, our automated system’s single-axis optimization

improves a manual beam-walk’s coupling efficiency by around 4−5% in a time of automation

of around 4−5 hours. Although these results seem like an insignificant improvement, note that

a manual beam-walk should perform relatively well in a single-axis optimization because

many of the possible angles are still swept through. However, when additional degrees of

freedom are added (e.g. the yaw axis), a manual beam-walk will begin missing many more

positions, in which case the automated system will take over.

More importantly, the results demonstrate the repeatability and the validity of our gradi-

ent descent algorithm. As shown in Figures 12 to 14, each individual gradient descent seems

to properly reach a local maximum. Furthermore, the random choice of starting points pre-

vents our system from getting stuck at a single local maximum. The validity and repeatability

of our algorithm has broad implications, as similar algorithms can be applied when more

degrees of freedom are considered. This is discussed further in the next section.
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6 Discussion and Future Work

In this study, we analyzed the applicability and benefits of an automated beam-walking

alignment system for a single-axis optimization. For future research, it is necessary to also

automate the other axis (the yaw) and perform an optimization on the four degrees of

freedom. There are two potential methods of doing this:

1. Repeat the same optimization process as explained in Section 3.2. Do this process

independently for the pitch and yaw axes, until the two maximums converge.

2. Still use the same optimization process as explained in Section 3.2, but do not do it

independently for the pitch and yaw axes. Instead, since we can still walk along the

voltage peaks for each axis, we can reduce this four-dimension optimization to a 2D

gradient descent. This guarantees the global maximum, and the algorithm does not

need to know anything about the physical system.

The first method is easier to implement and can be easily extended from this study.

On the other hand, the second method explained above has more general applications. In

particular, with additional degrees of freedom (e.g. the focal lengths of the collimating lenses,

distances between mirrors), we can add more dimensions to the gradient descent.

Another part of the study that requires further research is the use of more precise equip-

ment, e.g. industrial motors. The stepper motors that were used in this study were very basic

3D-printed CAD designs, and were thus subject to issues such as inaccuracy and hysteresis.

For example, due to the imperfect alignment of the motor with the mirror knob as well as

the gaps between the two joints, an additional angular “boost” was necessary to realign the

motor and mirror and fill in the gap every time the motor changed directions. This led to

slightly inaccurate motor turns, and additionally made it difficult to return the motor back

to its original position. In our study, this issue was mitigated by constantly performing small
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sweeps in the vicinity of an angle to find the true maximum. However, with more precise

motors, this step can be bypassed completely, making the system more time-efficient. Addi-

tionally, more precise motors would be able to turn by smaller amounts, making the system

less prone to overshooting the maximum coupling efficiency.

Another prominent issue was the inherent noise in the detector, power meter, and voltage

sensor. Due to this noise, we were forced to select relatively large values of δθ to calculate

the gradient at each point (refer to Appendix B) to ensure that calculated gradients were

significant and not due to fluctuations in the readings. This, in turn, made the error of

the location of the global maximum (which is on the order of δθ) relatively large as well.

Therefore, with more precise measuring equipment with less noise, we would be able to

choose a smaller δθ and hence reduce this error.

Thus, for further research, the use of more accurate and precise equipment has the po-

tential to significantly increase the coupling efficiency while lowering the time of automation.
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A Manual Beam-Walk Algorithm

Here, we describe a traditional algorithm to perform a relatively time-efficient manual

beam-walk. We use a setup similar to Figure 4, without the stepper motors attached to the

mirror knobs. Also, we attach an oscilloscope to the detector to see the output voltage with

respect to time. Note that this algorithm applies for each mirror axis independently i.e. we

perform it separately for the pitch and yaw knobs.

1. Rotate Mirror 2’s knob in one direction until the oscilloscope reads a voltage of ap-

proximately η of its original value. The value of η is specified below.

2. Attempt to “compensate” this drop by rotating Mirror 1’s knob. The rotation of Mirror

1’s knob should result in a relatively Gaussian distribution, so rotate the knob in the

direction that increases the voltage until it reaches a maximum.

3. • If the new maximum is less than the original voltage, the original Mirror 2 rotation

direction was either incorrect or too far. In this case, repeat Steps 1 and 2 but

rotate Mirror 2’s knob in the other direction until the voltage is approximately η′

(η′ > η) of its original value, and compensate with Mirror 1 again. From now on,

η = η′. The value(s) of η′ are specified below.

• Otherwise, the original Mirror 2 direction was correct. Repeat steps 1 and 2.

4. Repeat Steps 1 to 3 until η ≈ 0.75.

Initially, η ≈ 0.25. For the sake of time efficiency, η increases from 0.25 to 0.50 to 0.75,

after which the algorithm ends. Perform the algorithm separately on the pitch and yaw

axes, and repeat until both axes optimizations converge to the same value. This is necessary

because, in a realistic setup, there may be coupling between the two axes.
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B Gradient Descent Algorithm

In a classical gradient descent, the step size that we take at a point is proportional to

the derivative at that point. To be more precise, the step size follows the equation

∆x = α · df
dx

(3)

where α is the learning rate. However, using a fixed learning rate has its downsides. In

particular, a small learning rate accurately converges to the minimum or maximum but

takes many iterations to do so. On the other hand, a large learning rate may result in

the algorithm overshooting the minimum or maximum. For this reason, traditional gradient

descent algorithms in machine learning often run multiple trials to determine the optimal

learning rate [26], which can be inefficient.

To reduce the time of automation, we use a process similar to “learning rate annealing”

[27], which utilizes a dynamic learning rate. In particular, if the algorithm overshoots the

maximum, it returns to the previous step and reduces the learning rate by a factor of 2.

Refer to Figure 15 for a general algorithm outline. The algorithm allows the user to

specify the initial learning rate, maximum number of iterations, and tolerance. The tolerance

establishes a condition for stopping: if the percent increase of the measured value is less than

the tolerance, then the simulation stops. By allowing the user to specify these parameters, the

automated system allows for a trade-off between coupling efficiency and time of automation.

For instance, for a greater coupling efficiency, the user could input a smaller learning rate,

higher maximum number of iterations, and a lower tolerance.
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Set up driver, controller, motor, Raspberry Pi
Coarse Alignment

Input learning rate = α and tolerance = η

Connect Driver

Read Vi off of sensor

Vi > Vi−1

Turn back to pre-
vious motor angle

Vi/Vi−1 <
1 + η

Stop

Turn motor by step = α · dV
dθ

No

Decrease learning rate

Yes

No

Yes

Figure 15: Automated gradient descent algorithm with dynamic learning rate. Vi refers to
the measured voltage during the i-th iteration of the algorithm.

Of particular importance in Figure 15 is the calculation of dV
dθ

at each step. Since it is

impossible to move the motors by an infinitesimal angle and measure an infinitesimal change

in voltage, we must use the fact that

dV

dθ
≈ V (θ + δθ)− V (θ)

δθ
(4)

for sufficiently small δθ. Here, δθ is limited by the precision of the power voltage sensor. For

less precise equipment, δθ will need to be larger in order to detect an accurate change in the

voltage. Therefore, the algorithm also allows the user to input a gradient step δθ. However,
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this also means that the error of our algorithm in finding the angle with maximum coupling

efficiency is on the order of δθ. However, with small δθ, this error can be easily mitigated by

performing a small, brute force sweep at the end of our algorithm.

In the single-knob case, we use δθ = 25 steps ≈ 4.4◦ to be able to detect a change in the

voltage readings. Note that this also gives us an estimate on what the starting learning rate

should be. An order of magnitude estimate tells us that

∆x ∼ 100 steps, ∆V ∼ 0.1 V, δθ ∼ 25 steps =⇒ α ∼
∆x
∆V
δθ

∼ 25000 (5)

In the single-axis (double-knob) case, we use δθ = 50 steps ≈ 8.8◦. Note that this is

because, along the primary gradient in the 3D map, the envelope containing the voltage

peaks (Figure 10) is much wider than the Gaussian distribution in the single-knob case

(Figure 7), so we need a slightly larger δθ to detect a change. At the same time, the detected

change in voltage will also decrease. Another estimate gives us

∆x ∼ 100 steps, ∆V ∼ 0.01 V, δθ ∼ 50 steps =⇒ α ∼
∆x
∆V
δθ

∼ 500000 (6)
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C Zemax Setup

Since we only want to find a general shape of the 3D mapping between Voltage and

Mirror 1 and 2 Pitch Angles, we use a more general Zemax setup with several specifics from

our physical setup. The Zemax setup is shown in Figure 16.

Figure 16: Basic beam-walking setup in Zemax. Note that the point at the top is the laser
source, and the small line at the bottom is the detector. The distance between Lens 1 and

the detector is optimized using the focus optimization function.

The collimating lenses are specific to our physcal setup. Lens 1 (the bottom lens) is

ThorLabs F260FC-B [28], and Lens 2 (the top lens) is ThorLabs A397TM-A [29].

To sweep over all mirror angles, we continuously change the TiltDecenterData for both

of the mirrors. To calculate the coupling efficiency, we use the code:

TheSystem.MFE.GetOperandValue(ZOSAPIEditors.MFE.MeritOperandType.POPD)
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D Lower Order Optical Effects

Here, we propose an explanation for the discontinuities in the linear plot in Figure 11.

We focus first on the kink at Mirror 1 Pitch ≈ 1700 steps. Zooming into the 3D mapping

(Figure 10) at around this region, we obtain the plot shown in Figure 17.

Figure 17: Zoom in of 3D mapping at around Mirror 1 Pitch ≈ 1700 steps.

As seen above, the discontinuity is due to the emergence of a second ridge that “overtakes”

the original ridge. This results in an additional angle that the Mirror 2 pitch must turn before

reaching the maximum, which in turn results in a discontinuity in the linear plot in Figure 11.

The second ridge can be a result of various lower-order optical effects, one of which is the

airy disk effect [30, 31]. In particular, the intensity distribution of the laser is not a perfect

Gaussian, but instead has additional maxima further from the center of the beam. Therefore,

as the angular deviations of the mirrors increase, the intensity of the airy disk maxima may

overtake the intensity of the original Gaussian.
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