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Abstract

Dwarf galaxies and globular clusters accreted by the Milky Way become tidally stripped
stellar substructures. Identifying these stellar substructures is of tremendous interest for
galactic archaeology and can facilitate dark matter detection experiments. To make progress
towards effective automatic identification of stellar substructures, we propose the Super-
vised Neural Clustering (SNC) algorithm, which leverages an Edge-based Graph Convolu-
tional Neural Network to learn to generate a co-association matrix of stars from the FIRE
galactic simulation dataset. Then, another graph neural network is utilized to produce clus-
ter assignments from the co-association matrix in an unsupervised fashion. We discuss the
problem of evaluating clustering quality for the stellar substructure identification task and
perform extensive evaluation and ablation study on our SNC algorithm. Our SNC algorithm
is shown to outperform existing clustering algorithms for stellar substructure identification
dramatically.

Summary

Galaxies grow in size by consuming other smaller dwarf galaxies. 95% of the stars in the
outer halo of the Milky Way originate from a smaller dwarf galaxy that is consumed by the
Milky Way. Identifying these dwarf galaxy remnants can help us understand the formation
history of the Milky Way as well as aid dark matter detection experiments. Stars that
originate from the same dwarf galaxy generally share similar values for conserved physical
parameters. Using this property, one can identify remnants of dwarf galaxies by looking
for clusters of stars with similar physical parameter values. We develop a machine learning
based algorithm, called the Supervised Neural Clustering (SNC) algorithm to automatically
identify clusters of stars that likely originate from the same dwarf galaxy. Our algorithm
achieves state-of-the-art accuracy when tested on a computer simulated galaxy.



1 Introduction

Galaxies grow in a hierarchical manner through a series of merger events where a galaxy
gravitationally attracts and accretes smaller dwarf galaxies [I], 10, 21]. The accreted dwarf
galaxies form tidally disrupted stellar structures that constitute 95% of the Galactic halo
of the Milky Way [37]. Identifying stellar substructures in the Milky Way is of tremendous
interest because they encode the assembly history of the Milky Way [26]. Moreover, studying
accreted dwarf galaxies can help us deduce the kinematics profile of dark matter particles
traveling with these dwarf galaxies remnants [20, [41]. Because dark matter detection ex-
periments are contingent on the velocity profiles of dark matter particles, the designs and
calibrations of such experiments can be aided by the identification and study of accreted
stellar substructures [41], 4§].

The primary methods of stellar substructure detection are chemical-based [23, 34} [38], 149]
and kinematics-based [15], 37, [43]. Stars from the same progenitor share similar chemical
composition, making easily measurable chemical abundances such as metallicity and a-
abundance useful identifiers of stellar substructures [22, 23]. A second method for stellar
substructure identification leverages stars’ Integrals of Motion (IoM) (e.g. energy, angular
momentum, and action). IoM values can be computed from stars’ 6D kinematics (3D po-
sition and 3D velocity) measurements. They are adiabatic invariants under the assumption
of an axisymmetric, time-independent gravitational potential and low dynamical friction [6];
they are observed to be approximately conserved in the Milky Way [6]. Therefore, stellar
substructures can be effectively detected by identifying dense clusters of stars in the chemical
and integral of motion space.

Many chemical abundances and integrals of motions parameters can be considered for
stellar substructure identification. The high dimensionality of the parameter space makes

it difficult to manually identify clusters of data points in the parameter space. Therefore,



researchers have devoted much attention to applying clustering algorithms to automatically
identify accreted stellar substructures [8, O 14, 20, 25, 27, 30, B35, 42]. However, utilizing
clustering algorithms for accreted stellar substructure identification is an extraordinarily
challenging task. Accreted stellar substructures are generally phase-mixed in the position
space, velocity space, and even the integrals of motions spaces due to tidal disruption, dy-
namical friction, or the sheer amount of time that has passed since they are accreted into
the Milky Way [9]. Accreted substructures are also not highly separable in the chemical
abundance spaces. Brauer et al. recently surveyed the effectiveness of different clustering
algorithms for stellar substructure identification, and found no effective clustering algorithm
that can consistently recover stellar substructures [9].

We try to remedy this by proposing a Supervised Neural Clustering (SNC) algorithm
for stellar substructure identification. Our SNC algorithm is able to effectively distinguish
highly phase-mixed accreted substructures by learning to perform substructure clustering on
the FIRE [28, [51] computer simulated galaxy.

In Section [2.1, we describe the FIRE simulation dataset we used to train our model. In
Section [3.1], we provide the relevant background on existing clustering algorithms. In Section
3.2, we introduce the mathematical definitions and notations used in our SNC algorithm.
In Section {4, we propose the Supervised Neural Clustering (SNC) algorithm for stellar sub-
structure clustering. In Section [5, we discuss the challenges of evaluating stellar substructure
clustering accuracy and propose a novel probabilistic based metric for to evaluate clustering
algorithms’ ability to recover true clusters. In Section [6] we experiment the SNC algorithm
on computer simulated galaxies and compare its performance against existing clustering

algorithms.



2 Galactic Simulation Data

2.1 FIRE Simulation Data

The main dataset used in this work is the Latte suite of FIRE-2 cosmological hydro-
dynamic simulations of Milky Way-like galaxies [28] 50}, [51]; specifically, we focus on the
m12i and m12f simulated galaxies. The dataset contains the 6D kinematics and chemical
abundances of over 2 - 10° accreted stars in m12i and m12f. Each star is labeled with its
progenitor dwarf galaxy by Ostdiek et al. [40]. These ground-truth cluster assignment labels
allow us to consider the problem of stellar substructure clustering in a supervised setting and
also enable us to evaluate the clustering quality of an algorithm by comparing the cluster
assignment generated by the algorithm against the actual cluster label of each star. In this
work, we use m12i to train our Supervised Neural Clustering (SNC) algorithm, and evaluate

the algorithm on m12f.

2.2 Stellar Parameter Space

We describe the set of kinematic, orbital and chemical stellar parameters we select for
stellar substructure clustering. Existing works on using cluster analysis to identify stellar
substructures have been performed exclusively on either the integrals of motion variables [§],
20, 25], 27, 35], the positional variables [30], or the chemical abundances variables [7]. This
is sensible because the three variable spaces are not physically well connected, and cannot
be trivially combined for cluster analysis. Since our clustering approach leverages a neural
network that is capable of learning complex transforms, we can consider all three variable
spaces. Performing cluster analysis on a high dimensional parameter space is advantageous
because the stellar substructures have high degrees of overlap in low dimensional parameter
spaces, which makes them challenging to distinguish. The high overlap of stellar substructures

in 2D space is illustrated by Figure [I}



Variable Description
E the specific orbital energy, defined as the total orbital energy di-
vided by the mass of the star.

—

L= (L Ly,L,) the specific angular momentum of stars about the galactic center,
defined as the angular momentum divided by the mass of the star.

=

J= (T, Jr, Jp) the orbital actions [24], with each coordinate representing a star’s
degree of motion along that coordinate. Note that since Jy ~ L.,
we don’t include Jy in practice.

ecc the orbital eccentricity.
z the z location of the star in the galactocentric coordinate.
[%] the abundance of iron in the star, which approximately measures

the metallicity of the star.

SE

the abundance of magnesium in the star, which is approximately
measures its a-abundance value.

Table 1: All the stellar parameters selected for cluster analysis in this study. F, E, and J

belong in the integral of motion space. ecc and z are stars’ positional/orbital parameters.

(%] and [X] constitute the chemical abundances space considered in this study. All stel-

lar parameters chosen are considered as useful for stellar substructure identification in the
literature [37].

3 Background and Preliminaries

Before introducing our Supervised Neural Clustering (SNC) algorithm, we first provide
background material on existing clustering algorithms as well as related works. Then, we

define the mathematical notations used throughout this paper.

3.1 Clustering Algorithms Background

A clustering algorithm takes as input a set of data points and assigns each data point to
a cluster. The concept of a cluster is defined vaguely as a set of data points sharing some

similar characteristics, which may vary depending on the application’s context.

3.1.1 Unsupervised Clustering vs Supervised Clustering

Unsupervised clustering algorithms assign data points to clusters based on some man-
ually designed distance metric between data points. The metric or criteria an algorithm

adopts for cluster assignment reflect the algorithm’s definition of a cluster. Unsupervised
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Figure 1: Scatter plot of the 5 largest accreted stellar substructures in m12£f’s galactic halo
in various parameter spaces. Each color represents a stellar substructure [40]. The stellar
substructures are highly phase-mixed in all parameter spaces.

cluster analysis is a well-established field, with hundreds of algorithms proposed [52]. Many
of these algorithms have clustering metrics and criteria designed for one particular appli-
cation, limiting their generalizability [52]. Some general unsupervised clustering algorithms
include K-Means [17], DBSCAN [16], HDBSCAN [12], Gaussian Mixture Model [45], and
Spectral Clustering [46].

Supervised clustering algorithms learn the distance metric for assigning data points to
clusters from a set of training data, thus voiding the need to design different metrics/criteria
for specific use cases. Supervised clustering is an emerging field of research. Over the years,

multiple supervised clustering algorithms have been developed as extensions of existing un-



supervised clustering. Examples include the supervised spectral clustering algorithm [2],
supervised correlation clustering algorithm [I8], and supervised k-means algorithm [19]. Hsu
et al. [29] adopts a two step approach towards supervised clustering. In the first step, a
trained Convolutional Neural Network (CNN) [39] is used to compute the pairwise prob-
ability of two data points belonging in the same cluster. Then, a second CNN is applied
to generate the cluster assignments. Hsu et al. [29]’s work is, however, limited to semantic

image clustering.

3.1.2 Hard Clustering vs Soft Clustering

Hard clustering algorithms assign each data point to one particular cluster. Most classic
clustering algorithms, such as K-Means [17], DBSCAN [I6], HDBSCAN [12], and Spectral
Clustering [46] fall under the category of hard clustering algorithms.

Soft clustering algorithms do not assign each data point to a particular cluster. Instead,
they compute the probability of a data point belonging to each cluster, which is advantageous
in scenarios where a probabilistic clustering result is desired or when the true clusters overlap
to such a degree that it does not make sense to assign a data point in the overlapping region
to one cluster over another. Because stellar substructure clusters overlap to a high degree,
as demonstrated by Figure [I] we argue that soft clustering is more suitable for the task of
detecting stellar substructures.

Soft clustering algorithms include Fuzzy C-Means [4], Gaussian Mixture Model [45], and
a line of recent works that use Graph Neural Networks to generate cluster assignments by
optimizing for an unsupervised cost function [5] [44] [47].

Our proposed SNC algorithm follows closely along the line of work of using GNNs to
generate soft cluster assignments but differ from prior work in that our SNC algorithm is
supervised. The proposed SNC algorithm adopts a 2-step approach towards supervised clus-

tering similar to the work of Hsu et al. [29]. Different from Hsu et al., the SNC algorithm



solves the general supervised clustering problem (as opposed to being focused on seman-
tic image clustering), and leverage a GNN based architecture instead of the CNN based

architecture used by Hsu et al. [29].

3.2 Mathematical Preliminaries

To describe the cluster assignment generated by a clustering algorithm, we use a an
N x K cluster assignment matrix 7', following the framework adopted by [0, 44, 47]. N
denotes the number of data points in the dataset while K denotes the total number of
clusters generated by the clustering algorithm. We use T}, to denote the i*" row and k"
column of matrix 7. For hard clustering algorithms, Tj;, = 1 if the i*" data point is as-
signed to the k™ cluster and Tj, = 0 otherwise. For soft clustering algorithms, Tj, =
the probability that the i*® data point belongs in the k' cluster. In all cases, each row of T
sums to 1.

We use C' to denote a length N vector that encodes the label of each data point’s true
cluster. C; = label of the i** data point’s cluster.

We use S to represent the N x N co-association matrix as defined by Bulo et al. [11]. S;
represents the probability of data points ¢ and j belonging in the same cluster.

Let X denote the feature matrix of all N data points. X has N rows and 10 columns (each
corresponding to one of the 10 scalar-valued stellar parameters we have chosen in Section
. Let X;; denote the i*" star’s (*! feature.

In our proposed SNC algorithm, we model the dataset of N data points as a graph G,
with each data point represented as a vertex. The proposed SNC algorithm is general purpose
and does not place a constraint on how graph G is constructed from the data points. Each
vertex of the graph is associated with a feature vector with dimension d. We use an N x d
matrix V' to denote all N vertices’ features. In the context of a Graph Convolutional Neural

(GCN) Network, we use V! to denote the vertex features in the #'® layer of the GCN. Each



edge is associated with a d’ dimension feature vector. We use a 3D tensor E to denote all
edges’ features. F;j denotes the I*" feature of edge (4, 7). In the context of a GCN network,
we use E' to represent the edge features in the t'" layer of the GCN.

We use A to denote the adjacency matrix of graph G, where A;; = 1 if vertices 4, j are
connected and A;; = 0 otherwise. Let D be a N x N diagonal matrix where D;; = deg(i),

the degree of vertex i. The normalized adjacency matrix is defined as A=D3AD> [33].

4 Supervised Neural Clustering

In this section, we describe our proposed Supervised Neural Clustering (SNC) algorithm
for solving the general supervised clustering task. In the first step of the algorithm, we
generate the co-association matrix S of all the data points using an Edge-based Graph
Convolutional Neural Network (EGCN) architecture [31]. The EGCN is trained on the train
dataset and then applied to the test dataset without extra training. In the second step, after
computing a co-association matrix of data points in the test dataset, SNC leverages another
graph neural network to generate a cluster assignment from that co-association matrix. Note

that the second step of SNC is unsupervised while the first step is supervised.

4.1 Edge-based Graph Convolutional Neural Network

Traditional Graph Convolutional Neural Networks (GCNs) operate directly on the vertex
features [33], which are the features of the input data points. This is non-ideal for the purpose
of supervised clustering because the GCN tends to learn an absolute mapping from the input
data points’ parameter space to some feature space in which data points with the same true
labels coalesce together. These absolute mapping can lead to extreme overfitting because
the model could learn to draw specific decision boundaries in the input parameter space

and map two data points to coalescing regions based on whether they fall on the same



(a) Vertex Convolution (b) Edge Convolution

Figure 2: Illustration of the Vertex Convolution and Edge Convolution operations used in
our SNC architecture.

side of some non-general decision boundary in the input parameter space. To avoid the
non-generality of absolute mapping, we choose an Edge-based Graph Convolutional Neural
(EGCN) architecture [31] that focuses on the features of the edges. Our EGCN model utilizes

the following update rules:

1
Xi™ =ReLU | XiW/ o, + —— > ELWI,
) e 7 ’Utov+deg<l~>z i7" etow

J

EF' = ReLU (ELWHL, + (X, X;]WHL )

etoe vtoe

The first update rule represent a vertex convolution and the second update rule denotes an

edge convolution; they can be visualized as shown in Figure 2} The W! ., ,, Wt ., Wi o,
Wi, . matrices are learned weight matrices. [...,...] indicates a concatenation operation.

Compared to Kearnes et al. [31]’s architecture, we adopt a more restrictive update rule for
our EGCN — we use an addition instead of an additional linear map to combine the edge and
node features. The more restrictive architecture helps reduce overfitting for our SNC model.
We also make use of row-wise normalization [33] to ensure the vertex and edge features share

a similar scale across layers of the EGCN.



4.2 Generating Co-association Matrix with EGCN

To produce the co-association matrix, we use an EGCN with two layers and a feature
dimension of 32 for both vertex features and edge features. The final edge classification is
produced from the E? features via F(i,j) = o (EZQJ . Wclassify). The final output of the network
is the co-association matrix S with S;; = F(i, j).

We initialize the input vertex features of the EGCN with V° = 0 and input edge features
with By = | Xy — Xl

The EGCN-based model is trained end-to-end with the standard binary crossentropy

classification loss, which is defined as

L=— Z log(S;;) — Z log(1 — S;5)-

Ci=C; Ci#C;
4.3 Cluster Generation from Co-association Matrix

As the second step of the SNC algorithm, we take as input the co-association matrix S
generated by the EGCN-based model described Section and [4.2] and produce the cluster
assignment matrix 7" based on the co-association matrix. Note that this step is performed
in a completely unsupervised setting. The algorithm we propose for this task extend the
work pioneered by Bulo et al. [IT]. Bulo et al. noted that it follows from the definition of
the soft cluster assignment matrix 7" that ), TuTj = P(C; = C; | T) [1I]. From
there, Bulo et al. [11] proposed to find the optimal 7" by minimizing the L2 distance between

P(C; =C; | T) and S;;. The cost function they proposed is

L= Y (Sij— > :Fk:/;,€>2

all (i,5) 0<k<K

Directly minimizing L proves to be ineffective for scenarios with large disparities in cluster

10



sizes, which is the case for stellar substructure clusters. In these scenarios, the generated
T aggressively assigns most data points to a small number of clusters, leaving the rest of
the clusters "dead.” We propose a novel regularization constraint Leguiarize t0 mitigate dead

clusters.

Liegutarize = — Z log (1 — exp ( Z log (1 — Ti))) : (1)

0<k<K 0<i<N

Thus, the final loss function is Liotal = L + @ Lyegularize, Where o is a manually chosen param-
eter. See Appendix [A] for a probabilistic justification for this regularization loss function.

Due to the additional regularization, the mathematical approach Bulo et al. proposed for
finding the optimal 7" that minimizes L cannot be applied [I1]. Instead of optimizing for T
directly, we propose to use a generative graph neural network to generate 7', and optimize
for the parameters of the GNN instead. This is a promising solution because it follows the
approach introduced by Shchur and Giinnemann [44] to minimize a similar cost function for
unsupervised clustering. Shchur and Giinnemann [44] found that optimizing the parameters
of a generative GNN produces better clustering results than directly optimizing for 7'

We adopt a single-layer, 64-channel conventional GCN [33] followed by a K-class classifi-
cation head as our GNN-based model to generate T'. The input to the GCN-based classifier
is simply V° = X. Mathematically, the output 7" = softmax (GCN(X)Wjassity). The model
is trained on the test dataset in an unsupervised manner using the cost function L. The

cluster assignment generated by this GCN is the final output of the SNC algorithm.

5 Cluster Evaluation for Overlapping Clusters

Before presenting the experimental results of our SNC algorithm, we discuss the chal-

lenges involved in evaluating the quality of cluster assignment in the setting of highly over-
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lapping clusters and more specifically stellar substructure detection. To evaluate the quality
of a cluster assignment, we focus on the cluster assignment’s ability to recover real clusters,
because we are interested in the algorithm’s ability to recover and identify stellar substruc-
tures. For this reason, we use Intersection over Union (IoU) Precision and Recall,
which is a direct generalization of the Recovery Rate metric used by Brauer et al. [9]. For IoU

Precision and Recall, a true cluster A is considered to be correctly recovered by a generated

|ANB]

cluster B if TAUB|

> threshold, where threshold > 0.5. The precision and recall follow the

F#correctly recovered clusters and #£correctly recovered clusters

standard definition as F#generated clusters #true clusters

However, simple cluster recovery metrics such as the IoU metric cannot effectively deal
with highly overlapping clusters, which is the case for stellar substructure clusters, as illus-
trated by Figure [I} To demonstrate the point, consider the toy dataset in Figure [3| where
true cluster Ay overlaps with A;. Even if the clustering algorithm returns the correct clus-
ter detection results, as represented by ellipses By and Bs, the IoU metric would consider
(Ag, By) as a case of failed cluster recovery because |A; N By| > |Ay N By, which means
% < 0.5, and thus % < 0.5.

To address the challenge of evaluating cluster recovery rate in a situation with highly
overlapping clusters, we propose a novel precision and recall metric for soft clustering al-
gorithms. We name them, the Soft Precision and Recall metrics. Instead of counting
the overlap of data points between a true cluster and a generated cluster, we consider the
"matchedness” of a true cluster and a generated cluster in a probabilistic manner. We define
the matchedness of a true cluster A and generated cluster B to be the log-likelihood of gen-
erating A from B by sampling data points based on their probability of belonging to cluster

B. Recall that T;p represents the probability of the i*" data point belonging to cluster B.

The log-likelihood M 4g can be computed by

12



Map =Y log(Tip) + > _log(1 — Tip) (2)
i€A igA
Then, A is considered to be correctly recovered by B if Mg = maxg (Map/) and Mup =
max 4 (Ma ). In other words, A is the true cluster that is most likely to be sampled from B
among all true clusters; B is the generated cluster from which A is most likely to be sampled,
among all generated clusters from which A could be sampled.

The Soft Precision and Recall metrics can also be used to evaluate hard clustering algo-
rithms, in which case we can consider Myp « |[AN B| —|AU B|. See Appendix [B| for a proof
of this result.

Finally, we also use the Adjusted Mutual Information (AMI) as an auxiliary metric

because AMI performs well in the context of overlapping clusters [36].

6 Experiment and Discussion

6.1 Training Details

We train our Supervised Neural Clustering algorithm on simulated galaxy m12i and
evaluate its performance on m12f. To construct the graph G used in the SNC algorithm, we
simply connect every single data point to every other data point to form a complete graph.
Note that structural information of the dataset (i.e. the distance between data points) is pre-
served through the edge features fed into the EGCN. Unfortunately, this method of graph
construction imposes a huge limit on the computational efficiency of the SNC algorithm.
Under this graph construction method, the SNC algorithm can only process datasets of size
up to ~ 1000 or ~ 10000. Since the clustering quality is not expected to depend on the
size of the dataset, the SNC algorithm is trained and tested by sampling 1000 data points

from m12i and m12f. We first train the EGCN edge classifier on m12i for 1500 epochs using
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the Adam optimizer [32] with a learning rate of 0.01 and weight decay of 107°. The trained
EGCN is then used to produce a co-association matrix on m12f. We train the unsuper-
vised cluster assignment generator on the co-association until the loss converge. We consider
the K (maximum number of clusters) and « (regularization coefficient) parameters used in
the unsupervised cluster assignment generator as hyperparameters of our SNC clustering

algorithm.

6.2 Baselines

We compare SNC against Gaussian Mixture Model (GMM) [13] and HDBSCAN [12].
Note that HDBSCAN had been identified by [9] as the most effective clustering algo-
rithm for stellar substructure identification. GMM only accept one hyperparameter — the
maximal number of expected clusters. HDBSCAN has two significant hyperparameters,
min cluster_size and min_samples. Both baseline algorithms are run on 1000 data points

samples from m12f for fairness of comparison.

6.3 Hyperparameter Selection

Note that in actual application settings, the hyperparameters of clustering algorithms are
tuned on the Milky Way data against a catalog of already discovered stellar substructures
and are also tuned based on researchers’ qualitative assessments of the algorithm’s clustering
quality. For this reason, we allow the hyperparameters of all clustering algorithms to be
tuned on the test dataset m12f for fair comparison similar to the approach taken by Brauer
et al. [9]. To fairly compare our algorithms, we select hyperparameters that achieve strong
performance while maintaining a relative balance between the precision and recall values.
For HDBSCAN, we use min_cluster_size = 2 and min_samples = 1. For GMM, we choose

K = 30. For SNC, we find that setting K = 30, a = 10~ produces balanced results.
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Figure 3: Hypothetical clustering result on a toy dataset. Blue dots are data points in real
cluster A;. Red dots are data points in real cluster As. Blue ellipse corresponds to the region

covered by the generated cluster B; and the red ellipse correspond to the generated cluster
Bs.
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Figure 4: Comparison of performances of different stellar substructure clustering algorithms.
Our proposed SNC algorithm outperforms all other algorithms by large margins and across
all metrics.

6.4 Performance Comparison

Figure [ demonstrates effectiveness of our proposed SNC algorithm. SNC outperforms
HDBSCAN and GMM on all metrics dramatically. Notably, the SNC algorithm achieves over

2x the IoU recall rate of HDBSCAN while attaining 17x higher IoU precision compared to
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HDBSCAN.

6.5 Ablation Study

algorithm
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(a) Effectiveness of EGCN
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(b) Effectiveness of GNN-based Cluster Assignment Generator
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(c) Effectiveness of our proposed regularization in the GNN-based Cluster

Assignment Generator

Figure 5: Performance comparison between SNC and its ablated versions.
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Effectiveness of EGCN

We replace the EGCN with a 2-layer 32-channel standard GCN [33] with the same clas-
sification head. Instead of feeding edge features, E;; = |X; — Xj;| into the ECGN, we feed
Xy directly into each node of the GCN. For the reasons outlined in Section [4.1, we observe
the GCN model is significantly less generalizable, as demonstrated by its low performance
in Figure [bal

Effectiveness of GNNN-based Cluster Assignment Generator

The EGCN computes the co-association matrix, which can be directly fed into a Spectral
Clustering algorithm to generate clusters with optimal normalized cuts [46]. It is, there-
fore, natural to ask whether the complicated GNN-based Cluster Assignment Generator
is necessary to attain high clustering performance. To test this hypothesis, we apply the
Spectral Clustering algorithm to the outputs of the EGCN and compare the results against
those produced by the SNC. Figure [5b| demonstrates that the EGCN + Spectral Clustering
combination falls short of the performance of SNC over all metrics, thereby verifying the
effectiveness and importance of the GNN-based Cluster Assignment Generator module.

Effectiveness of our proposed regularization

Figure ol compares the performance of SNC with regularization and without regulariza-
tion. The unregularized SNC algorithm generates a high number of dead clusters (clusters
with no data points assigned to them), costing a significant drop in recall rates. SNC clearly

achieves significantly more balanced and accurate clustering results.

7 Limitations and Future Work

While the SNC algorithm achieves astounding improvements in clustering quality, the
SNC algorithm is computationally expensive because we construct the graph used by the SNC

algorithm by directly connecting every pair of data points. Therefore, a potential direction
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of future work is to explore the effectiveness of SNC on a smaller, incomplete graph. For
example, a kd-tree [3] based K-Nearest Neighbor search could be used to quickly generate a

graph by connecting each data point with its K-Nearest Neighbors.

8 Conclusion

To make progress towards effective automated stellar substructure identification, we con-
sidered the problem of stellar substructure clustering as a supervised clustering problem.
We proposed the Supervised Neural Clustering (SNC) algorithm for stellar substructure
identification. Then, we undertake an extensive discussion of the challenges of evaluating
clustering quality on a dataset with overlapping clusters. We propose a probabilistic eval-
uation metric to address those challenges. Finally, we perform extensive experimentation
and ablation study on the SNC algorithm, demonstrating the effectiveness of our algorithm

against existing clustering algorithms on the task of stellar substructure identification.

9 Practical Takeaways

The central result of this research is a machine learning based computer software that
can automatically analyze data of stars in the Milky Way and identify clusters of stars
that could correspond to prospective previously-unknown dwarf galaxies or globular clusters
accreted by the Milky Way. The identification of these stellar substructures can be used to
determine the merger history of the Milky Way and aid the design of dark matter detection
experiments.

The SNC algorithm’s application is not limited to stellar substructure identification. It
is a general-purpose supervised clustering algorithm. To the best of the author’s knowledge,

the SNC algorithm has the following novelties:
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1. It is the first graph neural network based algorithm used for supervised clustering.

2. It is the first Edge-based Graph Convolutional Neural Network (EGCN) architecture

proposed for the general clustering task.

3. It pioneers a two-step approach towards supervised clustering where in the first step
predicts a co-association matrix and the second step generates clustering based on to

co-association matrix.

Beyond our SNC algorithm, we proposed a statistically interpretable metric for soft

clustering that can deal with situations with overlapping clusters.
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A Justification for the proposed regularization loss

Intuitively, to prevent "dead clusters” is to ensure every cluster consistent gets at least
one data point assigned to it across multiple samplings of hard cluster assignments from 7.
To simplify, consider sampling a hard cluster assignment from 7" twice in a row. We formally
define a cluster k to be dead if does not receive at least one data point assigned to it in both

of the two samplings. Then, cluster £ is dead with probability

P(kis dead) = [] (1-173)

0<i<N

:exp< S log (1—@1))

0<i<N

We propose to penalize the negative log-likelihood that none of the K clusters is dead. The

negative log-likelihood can be computed as

Lyegutarize = — l0g < H (1—P(kis dead)))

0<k<K

=- > log(l—exp( > log(l—Ti)>>7

0<k<K 0<i<N

which is equivalent to Equation |1 and is used as our regularization loss.

B Extending the Soft Precision and Recall metrics to
evaluate hard cluster assignments

The Soft Precision and Recall metrics we proposed can be extended to evaluate hard
cluster assignment via the proportionality Map o |[AN B| — |A U B|. We provide a brief

justification for this result here.
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Notice that M,p is actually undefined for a hard cluster assignment matrix 7" where
Tip=0if i ¢ B and T;p = 1 if i € B. However, we can define a limiting version of T where

Tig=Mifi g€ Band T;p =1 — (K — 1)\. In this case, Equation can be reduced to

Mug =|A\ B| -log(\) + |A N Bllog(1 — (K — 1))

+|B\A|-log(1—(1—(K—=1DN)+|U\(AUB)|-log(1—2M\),

where \ denotes the set subtraction operation and U denotes the universal set. Once we take

the limit

lim Map = |[A\ B| -log(A) +[B\ A] - log(})
i,

= (|[AUB| = [AN B) - log(}),

which means Mp «x |[AN B| — |AU B in the limiting case where A — 0.
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