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Abstract

The world’s oceans serve a critical role in absorbing CO2 emissions, but this process con-
tributes to rising ocean acidity. Northern coastal bodies of water like Massachusetts Bay are
especially susceptible to ocean acidification. Massachusetts Bay supports a strong mollusk
fishery, including the economically important Atlantic sea scallop (Placopecten magellani-
cus). As oceans acidify, the saturation state of aragonite, a mineral critical in mollusk shell
formation, decreases, impeding shellfish development. In this study, a program was designed
to evaluate the impact of ocean acidification on sea scallop growth in Massachusetts Bay.
Equations modeling shellfish growth from previous literature were analyzed, and relevant
formulae extracted and compiled. The resultant program was coupled to an existing MIT-
MSEAS PE model. Initial parameters were sourced from recent population assessments. A
total of four experimental scenarios were run for 32.5 days, each scenario depicting a varying
dependency on three variables: aragonite availability, temperature, and physical phenomena
(e.g., tides, winds, solitons, density-driven flow, internal waves). Growth of Massachusetts
Bay sea scallops was found to depend heavily on aragonite saturation. Examined in isola-
tion, variations in initial temperature did not substantially affect sea scallop growth. The
incorporation of physical phenomena, however, resulted in subtle changes in scallop growth,
demonstrating that ocean dynamics play an important role in temperature redistribution.
Similarly, when both aragonite concentration and physical phenomena were incorporated
into the model, the resultant effect on scallop growth indicated that ocean dynamics are a
crucial driver of aragonite distribution as well. Coupling a shellfish growth submodel to the
MIT-MSEAS PE allowed successful modeling of the impact of aragonite, temperature, and
physical phenomena on sea scallop growth in Massachusetts Bay.

Summary

Levels of atmospheric carbon dioxide have increased as a result of human activity, causing
oceans to acidify. Northern coastal waters like Massachusetts Bay are especially vulnerable to
ocean acidification. As oceans acidify, the volume of minerals used in mollusk shell formation
(e.g., aragonite) decreases. This study designed a computer program modeling the impact
of ocean acidification on shellfish growth in Massachusetts Bay. Due to their vital economic
importance, sea scallops were selected as the study species. Four scenarios were run, each with
different variable dependencies. The results show that sea scallops rely heavily on aragonite
saturation to grow and develop. The effects of temperature appear less significant and nearly
uniform across locations. Physical dynamics are found to be critical in transporting aragonite
to deepwater environments and considerably impact the growth of sea scallops.



1 Introduction

Worldwide, levels of atmospheric carbon dioxide (CO2) continue to rise dramatically.

Anthropogenic CO2 emissions are of special concern, as they have exhibited an exponential

pattern of growth since measurements were first taken at the Mauna Loa Observatory in 1958

[1]. Recent estimates by Friedlingstein et al. [2] place total anthropogenic CO2 emissions

from 1850 to 2020 at close to 2420 gigatons of CO2. Elevated levels of atmospheric CO2

trap more radiation, warming the earth and damaging the biosphere [3, 4]. If unaddressed,

these emissions can precipitate natural disasters, scarcity of natural resources, and political

discord [5].

Acting as carbon sinks, the world’s oceans are critical in countering elevated levels of CO2

in the atmosphere. Since the beginning of the industrial era, oceans have absorbed almost half

(48%) of all anthropogenic CO2 emissions [6]. This buffer process releases hydrogen protons

(H+), decreasing ocean pH levels and increasing ocean acidity [7]. Not all marine zones are

equally affected by ocean acidification. Coastal waters are particularly vulnerable, as elevated

rates of freshwater input negatively impact buffering capability [8]. Northern waters exhibit

lower buffering capacity than their southern counterparts due to lower average temperatures.

Combining both of these features, northern New England coastal waters (e.g., Massachusetts

Bay) are therefore especially imperiled by ocean acidification [9].

As oceanic pH levels decrease, the availability of calcium carbonate polymorphs like arag-

onite and calcite (minerals critical for shellfish growth and development) also decreases [10].

Of special concern is the decrease in aragonite saturation (Ω) due to ocean acidification.

Aragonite is a more soluble form of calcium carbonate than calcite and is relied upon by

shellfish larvae for initial shell formation [11]. The heightened solubility of aragonite, how-

ever, makes it susceptible to ocean acidification, which corrodes aragonite [12]. A decrease

in the saturation state of aragonite negatively impacts shellfish growth, initiating a decline
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in shellfish population size [12]. Ecologically, shellfish serve as critical building blocks of the

complex oceanic trophic system. Acting as “ecosystem engineers”, shellfish filter water, com-

bat erosion, and create habitable environments for other species [13]. Due to the durability

of mollusk shells, this role persists long after shellfish death [14]. Shellfish contribute signif-

icantly to the global economy, but projections show that ocean acidification may lead to a

$100 billion loss in shellfish-generated revenue by the year 2100 [15].

Of particular relevance to the Atlantic coast is the Atlantic sea scallop (Placopecten

magellanicus). This species is of regional economic importance, with the 2019 commercial sea

scallop harvest generating over $570 million in landings [16]. Although primarily concentrated

on Georges Bank and the Mid-Atlantic Bight, sea scallops are distributed as far south as

North Carolina and as far north as Newfoundland [17]. In the acidification-prone waters

of Massachusetts Bay, a population exists along Stellwagen Bank [18]. In order to protect

this ecologically and economically critical species, the impact of ocean acidification on sea

scallops must be examined.

This study is designed to demonstrate the relationship between ocean acidification and

sea scallop population distribution. Values for ocean acidification variables are first generated

by a primitive equation model, then transferred to a scallop growth model. In this study,

initial ocean acidification variables (aragonite saturation and temperature) are sourced from

a numerical simulation of Massachusetts Bay using the Massachusetts Institute of Technol-

ogy Multidisciplinary Simulation, Estimation, and Assimilation Systems primitive equation

(MIT-MSEAS PE) model. To design an applicable shellfish growth model, existing models

were reviewed and the roles of ocean acidification variables in shellfish growth and devel-

opment were determined. Several shellfish models have been produced previously, but with

varied emphasis (e.g., individual growth, scope for growth, population dynamics, fisheries

management) [19, 20, 21]. After extensive evaluation, an existing scallop growth model out-

lined by Cooley et al. [21] in 2015 was selected and adapted to Massachusetts Bay conditions.
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In this way, a set of representative equations reflecting shellfish growth was established and

coupled to the existing MIT-MSEAS PE model. The resultant program serves as a com-

prehensive, real-time detection system displaying the impact of ocean acidification on sea

scallops in Massachusetts Bay.

2 Methods

2.1 Categorizing Existing Shellfish Growth Models

First current progress in shellfish growth modeling was reviewed. Available models had

a wide range of applications, forcing variables, and conclusions [22, 23]. The pool of models

was divided into two categories for further analysis: individual growth models and population

dynamics models. Individual growth models were found to often rely on dynamic energy

budget (DEB) theory. DEB theory is a metabolic theory that represents organism energy

use, reproduction, and development as functions of size and environmental interactions [24].

In addition, DEB theory is general and easily applied to a wide range of species across

developmental stages [25]. Models implementing DEB theory, however, did not reflect the

influence of established ocean acidification variables [26]. In contrast, population dynamics

models incorporated a larger bank of equations for a detailed analysis of an entire population.

Within these equations, especially those related to scallop growth and recruitment, variables

influenced by ocean acidification were found to play primary roles [21].

2.2 Suitability of Model Categories for Project Goals

This study determined that the ideal method of measuring the impact of ocean acid-

ification on Atlantic coast shellfish would utilize population dynamics models. Individual

growth models, although more simple, would reveal less information on the overall state of a
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species as compared to population dynamics models. Several models integrating temperature

[23, 27] were identified. Only one (Cooley et al., 2015) [21] addressed a second relevant ocean

acidification variable: aragonite. Following the process outlined by Cooley et al., the current

study adapts and couples this model to the MIT-MSEAS PE model and is the first to apply

it to sea scallops in the Massachusetts Bay area.

2.3 Shellfish Growth & Population Dynamics Equations

The shellfish submodel nested in the integrated assessment model designed by Cooley

et al. was selected as most suitable for modeling sea scallop response to ocean acidification

[21]. Unless otherwise stated, all equations below are sourced from the integrated assessment

model outlined in the Cooley study.

According to the shellfish submodel, total scallop population size is comprised of several

size class bins, which scale by 5 mm intervals. Scallops enter the first bin at the shell height

H of 40 mm, which corresponds to the time that they recruit into the general sea scallop

population [28]. This study defines the last size bin as having a lower limit of 90 mm and

an upper limit of ∞ to account for all sea scallops. The 90mm lower limit corresponds

to the 3.5-inch minimum shell height regulation for commercially harvested sea scallops in

Massachusetts, leaving open the future possibility of considering fisheries pressures upon this

final bin [29].

The number of individuals in each bin comprise h elements that then make up the vector

~n(t). The sum of all the elements of ~n(t) represents the total sea sea scallop population at

each time step t (yr).

The total count of scallops in each size class is given as:

~n(t+ ∆t) = ~R∆t+ Gt · e−(M)∆t · ~n(t) (1)
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where ~n(t+ ∆t) is the vector representing the subsequent scallop population (millions) after

the time step is applied, ~R is a measure of recruitment (individuals yr−1), ∆t is the change

in time (yr), Gt is a matrix which denotes the probability of advancing bins, M is a measure

of natural mortality (yr−1), and ~n(t) signifies the scallop population before the time step is

applied.

The equation modeling recruitment is defined as:

~R =
αRSSB

γR + SSB
(2)

where αR is defined as the recruitment asymptote (millions of individuals), γR is defined as

the half saturation coefficient (mT meats), and SSB is the spawning stock biomass (mT

meats). The values for αR and γR were obtained from the Georges Bank initial parameters

outlined in Cooley, et al. [21]. Scallops only recruit into the first (40− 45 mm) size class. For

simplicity, this study assumes that the recruitment rate is constant throughout the year.

To model the impact of aragonite saturation state (Ωaragonite) on scallop recruitment, an

empirical scale factor is computed to be applied to initial spawning stock biomass (SSBi):

SSB scale factor =
% survival

% average survival
=

(20.5Ωaragonite − 3.7)

45
(3)

where % survival is represented by the function (20.5Ωaragonite − 3.7). The value for

% average survival is given as 45 in accordance with control survival rates of great scallops

(Pecten maximus) established by Andersen et al. [30]. This scale factor is then applied to

SSBi following the relationship outlined in Equation 4:

scaled SSB = (SSBi) (SSB scale factor) (4)
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where scaled SSB is the output to be used in quantifying R, SSBi is initial spawning stock

biomass, and SSB scale factor is the scale factor applied to initial spawning stock biomass.

Calculated at each hour-long advance in time, scaled SSB serves as an input to Equation

2, which models sea scallop recruitment adjusted for aragonite saturation.

The growth matrix Gt describes scallop growth across size classes at every active grid

point. In general, Gt is a square matrix of size (nbins ·ngridpoints)×(nbins ·ngridpoints) where nbins

is the total number of size classes being considered and ngridpoints is the number of active grid

points (points where scallops are being modeled). This study’s program contained 13,139

active locations. Gt becomes especially tractable when the following modeling assumptions

are made.

1. Scallop growth at one grid point is not affected by scallop growth at any other grid

point. This encompasses both the notion that scallops do not move frequently enough to

travel between grid points and the idea that scallop growth does not impact the physical

fields (temperature, aragonite) that are controlling growth. Under this assumption, Gt

becomes block diagonal with ngridpoints block sub-matrices, Ĝt, of size nbins × nbins.

2. The time step ∆t is small enough that scallops cannot “jump” size classes (e.g., scallops

from size class i− 1 can grow into size class i but scallops from size classes 1, 2, .̇., i− 2

cannot). With this assumption each of the block sub-matrices, Ĝt, becomes bi-diagonal

with the nonzero elements restricted to the main diagonal and to the first sub-diagonal.

If the probability of a scallop growing out of size class i is denoted as Pi, then each of

the elements, Ĝt;(i,j), of Ĝt can be written as:

Ĝt;(i,j) =


1− Pi j = i; i ∈ {1, 2, . . . , nbins}

Pi−1 j = (i− 1); i ∈ {2, 3, . . . , nbins}

0 otherwise

(5)
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To evaluate Pi, the range of shall lengths that could grow out of size class i is estimated

by computing how much growth a shell beginning as the upper limit of size class i can grow

in time ∆t (∆H). Then, it is assumed that any scallop of shell length within ∆H of the

upper limit will grow out of size class i. Finally, it is assumed that the scallop shell lengths

within a size class are uniformly distributed in that size class, so the probability is ratio of

the lengths:

Pi =
Ht+∆t −Ht

Bin Width
=

∆H

Bin Width
(6)

where Ht+∆t is shell length (mm) after the change in time, Ht signifies shell length before

the time step is applied, and Bin Width represents the width of the size bin (5 mm).

Change in shell length ∆H is represented by:

∆H = (H∞ −Ht) (1− e−K∆t) (7)

where H∞ is asymptotic length (mm) and K is the Brody growth coefficient, a measure of

how fast it takes for an organism to reach maximum length.

K is calibrated to both temperature and aragonite. To calculate change in K because

of change in aragonite saturation, it is first necessary to determine the relative change in

aragonite from the control:

∆Ω =
Ω

Ωcontrol

− 1 (8)

where ∆Ω is the relative change in aragonite from the control, Ω is the measured aragonite

saturation state, and Ωcontrol is the control aragonite saturation state.
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Then, change in growth rate is represented by the empirical equation:

∆G = 1.272∆Ω + 0.075 (9)

where ∆G is a measure of relative change in growth rate.

Finally, assuming that the relative change in G is equal to the relative change in K,

change in K from the initial value is generated by multiplying relative change in growth rate

by the Brody growth coefficient:

∆KΩ = ∆G ·Ki (10)

where ∆KΩ is the relative change in K from the initial value Ki due to change in aragonite

saturation.

To calibrate K to change in temperature, this study drew from empirical temperature-

growth relationships outlined in Heilmayer et al. [31] and determined that the sum of Ki

and the change in K due to temperature can be represented by the empirical equation:

Ki + ∆KT =
ee

4.22−958.466· 1
T

M∞
(11)

where K + ∆KT represents K plus the change in K due to temperature, T is a measure of

temperature (kelvin), and M∞ is the asymptotic total weight (g).

After the outputs of Equations 10 and 11 are calculated, overall change in K due to

change in T and Ω can be summed:

KT,Ω = Ki + ∆KT + ∆KΩ (12)

8



where KT,Ω represents change in K due to both temperature and aragonite saturation.

2.4 Identification of Suitable Input Parameters

Several parameters from Cooley et al. [21] were adjusted. Population size (millions),

length frequencies, and SSBi (mT meats) were determined according to data collected by

Lisi et al. in 2021 [18]. Asymptotic total weight M∞ was calculated following total weight

to meat weight relationships outlined by Hennen and Hart [32]. A value for the control

saturation state of aragonite (Ωcontrol) was obtained by averaging the initial values for Ω at

the bottom level around Stellwagen Bank. This study did not consider pressures exerted by

fisheries (denoted as Zt in Cooley et al. [21]), allowing focused examination of the effect of

ocean acidification on sea scallop performance. Initial values for dissolved inorganic carbon

and total alkalinity were obtained from the MIT-MSEAS PE model and used to compute

the aragonite saturation state using the CO2SYS equilibrium [33]. To best reproduce the

environmental conditions of Massachusetts Bay, total dissolved inorganic silicon and total

dissolved inorganic phosphorus were set at 0 µmol/kg. Standard atmospheric pressure was

set at 10.132501 decibars. The K1 and K2 dissociation constants were set at 3 in accordance

with the conclusions of Hannson refit by Dickson & Millero [34, 35]. The value for the KSO4

dissociation constant was also set at 3 following the conclusions of Dickson in 1990 [36].

Table 1: Input Parameters for Sea Scallop Growth Model

Parameter Value Units Source Use
Ωcontrol 1.75 MIT-MSEAS PE Equation 8
average survival 45 % [30] Equation 3
Ki 0.429 yr−1 [21] Equation 10
M∞ 467.685 grams [21, 32] Equation 11
SSBi 1013 mT meats [18] Equation 4
αR 20.17 millions [21, 37, 38] Equation 2
γR 6.664 mT meats [21, 37, 38] Equation 2
H∞ 144.9 millimeters [21, 37] Equation 7
M 0.12 yr−1 [21, 37] Equation 1
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2.5 Program Design

The scallop growth program’s code was written in MATLAB, following a modular and

flexible design approach. The program was designed from the top-down and written from the

bottom-up. Construction began with the first equations necessary to calculate the variables

involved in Equation 1 (e.g., Equation 3, Equation 8). Each function was unit tested along the

build process. Substituting simple values for variables ensured that each individual file was

performing as intended and that any subsequent errors would not be related to coding errors

in functions already passing the unit tests. Values of aragonite saturation and temperature

were passed to the functions through one-way coupling (without feedback) to the MIT-

MSEAS PE model. The computational domain for the Massachusetts Bay simulation is

shown in Figure 1.

Figure 1: Bathymetry chart of Massachusetts Bay providing visual representation of depth
(meters) by location [39]. The modeling domain of the MIT-MSEAS PE model is enclosed
by the red border.
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2.6 Experimental Scenarios

Based on the initial parameters and equations outlined above, four experimental scenar-

ios were run. The first scenario (Run 1) modeled scallop growth as a function of aragonite

saturation, temperature, and physical phenomena (tides, winds, solitons, density-driven flow,

internal waves). The second scenario (Run 2) modeled scallop growth as a function of tem-

perature and physical phenomena, but not aragonite saturation. The third scenario (Run 3)

modeled scallop growth as a function of temperature only, excluding both aragonite satura-

tion and physical phenomena. The fourth and final scenario (Run 4) modeled scallop growth

as a function of aragonite and temperature, but excluded physical phenomena. Each scenario

was run from the time period August 11, 2019 to September 13, 2019 to ensure that accurate

data from the MIT-MSEAS PE model was utilized.

2.7 Initialization

This study aimed to create initial conditions as representative of the Massachusetts Bay

sea scallop population as possible. Although the shallow waters of the Bay hold mainly bay

scallops, a sizeable population of sea scallops exists around Stellwagen Bank. Following the

conclusions of the 2021 Stellwagen Bank sea scallop population assessment conducted by

Lisi et al. [18], a set of area-specific initial conditions (population size, boundary parameters,

and length distribution) were developed.

Stellwagen Bank sea scallops were divided into a northern and southern sector. The

northern population box had latitudinal boundaries of 42.33◦ N to 42.62◦ N and longitudinal

boundaries of 70.25◦ W to 70.67◦ W. The southern population box had latitudinal bound-

aries of 42.12◦ N to 42.33◦ N and longitudinal boundaries of 70.09◦ W to 70.44◦ W. Initial

population sizes (89.65 million for the northern box and 17.76 million for the southern box)

were assigned evenly within each box. Initial distribution of scallops across the 11 size bins
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was calculated using size distribution data from Lisi et al. [18] for each box.

3 Results & Discussion

Within Massachusetts Bay, there exist several dynamical phenomena driving distribution

of aragonite and temperature. Internal tides, winds, solitary waves, and background advec-

tion of water from the Gulf of Maine all play critical roles in influencing aragonite saturation

state and temperature levels [39]. Deep waters such as those on the western border of North-

ern Stellwagen Bank (Figure 1, 42.3◦ N 70.5◦ W) tend to have lower saturation levels of

aragonite than shallow waters (Figure 2a). This finding is due to acidic deep-water input

from the Gulf of Maine [40], but local tidal and wave patterns result in mixing of aragonite

across depths. While aragonite depth distribution without physics appears smoothly strat-

ified (Figure 2a), oceanic disturbances from internal waves, etc. transport highly-saturated

surface aragonite down to deeper waters (Figure 2b).

(a) Initial aragonite distribution. (b) Aragonite distribution after 2.5 days.

Figure 2: Effects of physical phenomena on aragonite distribution by depth over a 2.5-day
period [39]. Note the disruption of aragonite stratification in Figure 2b due to the passing of
an internal wave. These physical actions bring highly-saturated aragonite to deeper waters,
making it more available for use by shellfish.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 3: Run 1, change in sea scallop size distribution considering the effects of temperature,
aragonite, and physics. Sea scallop growth shows a strong dependency on aragonite and
physics. Figure generated by researcher.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 4: Run 2, change in sea scallop size distribution considering the effects of temperature
and physics, but not aragonite. Temperature influence appears fairly uniform, but subtle
physical effects are present. Figure generated by researcher.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 5: Run 3, change in sea scallop size distribution considering the effects of temperature,
but not aragonite or physics. Note that the difference between Run 3 and Run 2 is small,
displaying a slight influence of physics on temperature distribution and scallop growth. Figure
generated by researcher.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 6: Run 4, change in sea scallop size distribution considering the effects of aragonite and
temperature, but not physics. The striking difference between Run 4 and Run 1 highlights
the critical role ocean physics plays in aragonite distribution and scallop growth. Figure
generated by researcher.
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Over the 32.5-day period, the run with full dependency on aragonite, temperature, and

physics (Run 1) saw substantial recruitment into the first (40−45 mm) size class (Figure 3a).

The next two size classes (45−50 mm and 50−55 mm) exhibited increases in population size

along the northern box depth decline, and the 50 − 55 mm size class saw growth along the

western ledge of Northern Stellwagen Bank (Figure 3b, Figure 3c). The 55−60 mm size class

appeared to have sizeable input from the lower size classes within an area of deep water on

the western border of Northern Stellwagen Bank (Figure 3d). The southern zone, however,

saw net loss in scallop population size. Mortality (M) is constant in the model. Therefore, an

abnormal loss in population of a size class can either represent growth out of that size class

into the class above, or that the number of scallops exiting the lower size class is less than the

combined effect of growth into the upper size class and M . The following 6 size classes (60−90

mm) had similar patterns of growth (Figures 3e-3j). While population size increased along

the eastern ledge of Northern Stellwagen Bank and in the northeastern corner of the northern

box, nearly all other sectors saw a net loss in population size. The final size class (90 mm−∞)

exhibited growth along the coastline in the northwest corner of the northern box, the shallow

zone of Northern Stellwagen Bank, and the deep zone bordering Northern Stellwagen Bank

to the west. Additionally, the southern box exhibited a slight rise in population size within

the shallowest area of Southern Stellwagen Bank, though surrounding change was mostly

negative (Figure 3k). As dynamical phenomena (e.g., tidal movements, wind, storms) were

considered in this run, aragonite saturation varied by location with time. Tidal movements

increase mixing of waters, bringing highly saturated aragonite down to deeper waters and

promoting growth [39]. This downwelling effect was likely a critical driver of the increased

growth within the deep area west of Northern Stellwagen Bank. Overall, full dependency on

physics, aragonite, and temperature resulted in remarkable variation in growth within and

among size classes.

Run 2, executed with a dependency on temperature and physics, exhibited results similar
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to those of Run 3, where temperature was considered but aragonite dependency and physics

were excluded. Slight differences were detected among plots, especially in Figures 4b and 5b

(size class 45−50 mm) and Figures 4e and 5e (size class 60−65 mm). All other plots contained

no visible variation. The lack of strong variation between runs displays that the influence of

dynamical phenomena on temperature distribution in Massachusetts Bay has little impact

on shellfish growth. However, there was a subtle effect of physics on population growth due

to temperature over the 32.5-day period. Without physics, more change in population size

was identified in shallower/warmer regions. When physics was considered and waters mixed,

shallow water-specific growth became less notable. If the simulations were carried out over

a longer span of time, this effect would be magnified.

Run 4 considered both temperature and aragonite saturation, but physical phenomena

were excluded. Values for temperature and aragonite were read only from the initial condi-

tions. As there was no opportunity for dynamical phenomena to influence the distribution

of aragonite or temperature, the results of Run 4 shared little similarity with the results

of Run 1. Run 4 saw considerable growth within areas of deeper water surrounding North-

ern Stellwagen Bank in size classes 6b-6j, but this growth was less frequent in the Run 1.

Additionally, the last size class of the fourth run (Figure 6k) exhibited growth on the shal-

lowest areas of Stellwagen Bank, whereas the last size class of Run 1 saw negative growth

within these areas (Figure 3k). Dissimilarity between the two runs highlights the vital role

that ocean dynamics play on aragonite and temperature distribution, as well as on shellfish

growth and development.

4 Future Work

The 32.5-day run period of each experimental scenario provided valuable insight into the

role physical phenomena and ocean acidification variables (aragonite saturation, tempera-
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ture) play in influencing sea scallop growth. A longer run duration, perhaps over an entire

season of growth, may reveal more significant trends. For instance, if the run time of Run 2

was extended, the effect of physical phenomena on temperature distribution may impact a

wider range of size classes. An even longer time frame, utilizing data from before the indus-

trial revolution, would convey the impact of anthropogenic ocean acidification over a more

sweeping, historical timeframe. Runs observing these long time scales would prove critical in

shaping an understanding of how shellfish growth rates are affected by long-term changes in

ocean environments. The results generated by this model might also be compared to empir-

ical data to test accuracy. Moreover, forecasting programs could be probabilistic, providing

reliability estimates of produced forecasts. Additionally, initial conditions and recruitment

parameters could be set as position-dependent, rather than evenly distributed, which would

provide a precise profile of ideal growth zones. Such a system would provide invaluable ad-

vice to shellfish farms and fisheries management organizations regarding the threat of ocean

acidification on a particular shellfish population.

Currently, the model only addresses the impacts of aragonite and temperature on larval

survival (equation 2). Unlike their mature counterparts, sea scallop larvae are not fixed to the

ocean floor. Instead, they are dispersed throughout the water column [41]. Larvae also have

the ability to move and be advected horizontally. Modeled recruitment would be enhanced

by functions and/or simulations representing the impact of aragonite and temperature on

larvae across a wide depth and area range, rather than limiting these variables to deep-water

values.

In Massachusetts Bay, several additional shellfish species exist. Of special relevance is the

American oyster, which has substantial ecological and economic value [42]. Due to disease

and improper management, American oyster populations have fallen significantly [43]. In

fact, estimates conclude that harvest levels of the widely-studied Chesapeake Bay American

oyster population have fallen to only 1% of maximal productivity [44, 45, 46]. The equations
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and parameters implemented in the current sea scallop model could be adapted to this

species, and a growth model could be developed to accurately predict the impact of ocean

acidification on the strained American oyster population. Such an adaptation would involve

evaluating the implications of shallow-water environments on the MIT-MSEAS PE model

and considering the impacts of river input and erosion on coastal environments.

This study did not consider the effects of fishing pressure on modeled sea scallop popu-

lations, which assisted in reaching a baseline understanding of the impacts that aragonite,

temperature, and dynamical phenomena have on sea scallops. To practically implement such

a model into fisheries management, however, fishing mortality and selectivity for certain size

classes should be incorporated.

5 Conclusion

When coupled to the MIT-MSEAS PE model, the shellfish growth model successfully pro-

jected the impact of aragonite, temperature, and physical phenomena on sea scallop growth

in Massachusetts Bay. Trends exhibited in Run 1 displayed a distinct reliance upon aragonite

by Massachusetts Bay sea scallops. Due to the wide range in growth rates within and among

size classes, it can be concluded that Massachusetts Bay aragonite saturation was not evenly

distributed. Temperature effects on sea scallop growth were less obvious (Run 2, Run 3) and

appeared relatively uniform in distribution. When physical phenomena were incorporated,

the model yielded subtle changes in shellfish growth. A temperature redistribution effect was

noted when Run 2 was compared to Run 3. Similarly and more convincingly, when Run 1

and Run 4 are compared, the impact of ocean dynamics on aragonite distribution and scal-

lop growth is demonstrated. Tides, internal waves, wind, and solitons are crucial drivers of

this phenomenon, intermittently bringing highly-saturated surface aragonite down to deeper

waters inhabited by sea scallops and promoting substantial growth and development. The
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shellfish model produced by this study could be enhanced with longer run times and the

consideration of fisheries mortality. Longer run times would model the centuries-long im-

pact of ocean acidification on sea scallops, and the consideration of fisheries mortality would

facilitate more relevant use by fisheries management organizations.

6 Practical Takeaways

This study’s findings have practical applications in the fields of aquaculture, fisheries

management, and environmental assessment. The shellfish aquaculture industry is prominent

along the Atlantic coast and in the state of Massachusetts, yielding 45.5 million dollars in

a 2015 study from Augusto and Holmes [47]. This industry will require consistent growth

to meet demand. As oceans acidify and shellfish growth rates slow, it will become harder to

sustain the shellfish industry. With slight modification of initial parameters, the model in

this study could be implemented by shellfish farmers along the coast. Farmers would be able

to determine ideal locations and seasons for growth, increasing efficiency and providing the

industry with more resilience against a changing climate.

While aquaculture has the ability to control early stages of growth in shellfish, the Atlantic

coast mollusk fishery does not have this advantage. Ocean acidification poses an extreme risk

to wild shellfish populations, and must be factored into stock assessments and regulation. The

model produced by this study would provide valuable information regarding threatened areas

and populations. To be useful to fisheries management, the model would have to be adapted

to the specific location and goals of the fishery under study. Fishery selectivity of certain

size classes or harvest locations could be factored into the model through mortality rates or

population/length distribution. Already, models exist that consider the pressures of fishing

on shellfish populations [21]. Different species and fishing areas have different regulations.

These parameters could be fine-tuned to specific species and fisheries, generating an accurate
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representation of the impact of ocean acidification on already-pressured shellfish populations.

Finally, the structure of this model and the program itself should be reviewed for use

in environmental assessments. The implications of ocean acidification are not limited to sea

scallops, nor to the Atlantic coast. This phenomenon impacts ecosystems across the world.

The structure and function of this study’s model could be easily applied to a wide range of

environmental conditions. Such application would increase the world’s understanding of the

impact that a changing climate and acidifying oceans have on our marine ecosystems.
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A Appendix

A.1 Shellfish Growth Model Pseudocode

Shellfish:

– Get input parameters

– Set initial conditions

– Loop over all time

∗ Read data

∗ Update shellfish

∗ Save shellfish

– Close files

Get input parameters:

– Fetch initial parameters for growth model

Set initial conditions:

– Open MIT-MSEAS PE, output files for shellfish

– Input initial conditions (e.g., population distribution of shellfish, boundary pa-

rameters)

Read data:

– Read salinity from MIT-MSEAS PE

– Read total alkalinity from MIT-MSEAS PE

– Read dissolved inorganic carbon from MIT-MSEAS PE
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– Read temperature from MIT-MSEAS PE

Update shellfish:

– Compute G

– Compute R

– Get M

– Total count of scallops in each size class calculated here

Save shellfish:

– Save output

Compute G:

– Get H∞

– Compute H

– Compute KT,Ω

– Growth matrix calculated here

Compute R:

– Get αR

– Get γR

– Compute scaled SSB

– Total recruitment calculated here

Compute KT,Ω
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– Compute Ki + ∆ Kt

– Compute ∆ KΩ

– Total change in K due to temperature and aragonite calculated here

Compute scaled SSB

– Compute scale factor

– Scaled SSB calculated here

Compute Ki + ∆ Kt

– Get M∞

– Get temperature from MIT-MSEAS PE

– Initial K plus change in K due to temperature calculated here

Compute ∆ KΩ

– Compute ∆G

– Get Ki

– Change in K due to change in aragonite calculated here

Compute scale factor

– Get average survival

– Get aragonite scale factor coefficient

– Get survival intercept

– Get aragonite from MIT-MSEAS PE

– Scale factor applied to spawning stock biomass calculated here
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Compute ∆ G

– Get delta growth aragonite coefficient

– Get delta growth intercept

– Compute ∆Ω

– Relative change in growth calculated here

Compute ∆Ω

– Get aragonite from MIT-MSEAS PE

– Get Ωcontrol

– Relative change in aragonite from the control value calculated here
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