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Abstract

Let E(n) denote the exterior algebra on n+ 1 generators. It is a subalgebra of the dual
Steenrod algebra. We are motivated to study modules over this algebra because they provide
the E2 page for the Adams spectral sequence, which is used to compute stable homotopy
groups. In 1976, Adams and Priddy introduced the stable Picard group of modules over
E(n), denoted StPic(E(n)). They conjectured that StPic(E(n)) ∼= Z⊕Z for all n. We prove
that this conjecture can be reduced to checking only the case StPic(E(2)) ∼= Z⊕ Z.

Summary

A classic problem in algebraic topology is finding all possible ways to continuously deform
a shape X into another shape Y . This proves to be a very difficult task in general. One
approach is to compute algebraic approximations of these deformations, called modules. It
is conjectured that all modules of a particular type can be factored into the product between
two basis modules. We reduce the conjecture from an infinite number of cases to just one.



1 Introduction

A common theme in algebraic topology is to find all the possible continuous deformations
from a shape X to another shape Y . These maps are known as homotopies. An example of
homotopies from one circle to another is shown in Figure 1

Figure 1: Three possible homotopies from a black circle to a blue circle, labeled by the
number of windings present [1]

However, computing homotopies for higher dimensional spaces is extremely difficult, seen
through the existence of highly nontrivial examples such as the Hopf map, a homotopy from
a 3-sphere to a 2-sphere.

Figure 2: A stereographic projection of the Hopf map [2]

Modern approaches study these topological concepts by converting them to algebraic
structures. In 1958, J.F. Adams [3] found that groups of homotopies can be computed from
modules M over certain algebras, including the Steenrod algebra Ap, the Hopf algebra Ap(n),
and the exterior algebra Ep(n). Intuitively, modules over algebras may be thought of as
generalizations of vector spaces where the scalar product is not necessarily invertible. Here,
the parameter n specifies the number of generators of the algebra, similar to a measure of
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dimension. The modules M form a group under multiplication called the stable Picard group,
denoted StPic(Ap), StPic(Ap(n)), or StPic(Ep(n)) depending on the underlying algebra.

This connection between homotopies and StPic motivates research on the exact structure
of StPic. In 1976, Adams and Priddy [4] proved that StPic(E2(1)) is isomorphic to Z ⊕ Z.
In other words, the modules over the algebra E2(1) behave like pairs of integers. The same
paper proved that StPic(A2(1)) ∼= Z ⊕ Z ⊕ Z/2, where the Z/2 component is generated by
an exotic module known as the Joker. However, in 2017 Bhattacharya and Ricka [5] proved
that StPic(A2(2)) ∼= Z⊕ Z, with Pan and Yan [6] later proving that StPic(A2(n)) ∼= Z⊕ Z
for all n ≥ 2. This shows that no exotic element exists over larger Hopf algebras. A similar
isomorphism is expected to be true for modules over Ep(n): Adams and Priddy conjectured
that StPic(Ep(n)) ∼= Z ⊕ Z for all natural numbers n and any prime p. We show that the
conjectured isomorphism for any n depends only on the verification of the case n = 2, as in
Theorem 1.1.

Theorem 1.1. Let p be a prime. If StPic(Ep(2)) ∼= Z⊕ Z, then StPic(Ep(n)) ∼= Z⊕ Z for
all integers n ≥ 1.

The paper is structured as follows. In Section 2, we define a stable Picard group more
rigourously, recall results from literature that we use in the paper, and establish the map
φ : Z ⊕ Z → StPic(Ep(n))) which we show is an isomorphism. In Section 3, we prove that
the map φ is injective and introduce the base case necessary for induction. In Section 4,
we show that restrictions of M to a subalgebra of Ep(n) do not affect its structure in StPic,
thereby strengthening our inductive hypothesis. In Section 5, we introduce the notion of the
annihilator of an element x ∈ M and provide results characterising its behavior. Finally, in
Section 6, we prove the main Theorem 1.1 by analysing the annihilator of an element in M .

2 Preliminaries

In 1958, J.F. Adams [3] showed that the cohomology of the mod p Steenrod algebra
Ap can be used to compute the p-components of the stable homotopy groups of spheres.
Furthermore, these cohomology groups can be considered as modules over Ap. Later, Milnor
[7] showed that the dual of the Steenrod algebra can be expressed as a tensor product between
a polynomial algebra and the graded exterior algebra Ep over the field k = Fp generated by
the unit 1 and the symbols Qi of degree 2pi − 1, where i ≥ 0.

Let N be a finite subset of {Q0, Q1, . . .}. Then, let E(N) denote Ep restricted to only
the generators 1 and Qi ∈ N . When N = {Q0, . . . , Qn} for an integer n, we also write
E(N) = E(n), as to agree with conventional notation in literature. We also drop the
subscript p, as we maintain the assumption that the base field is k = Fp throughout the
paper. Recall that Q2

i = 0 and QiQj = −QjQi for any two generators Qi and Qj by
definition of an exterior algebra, where concactenation denotes the wedge product. We
investigate the structure of the stable Picard group of modules over E(N) and E(n).
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2.1 Stable Picard Group

Adams and Priddy showed that the usual topological concepts in stable homotopy theory
can be translated into algebraic definitions, which we now provide.

Definition 2.1 (Stable equivalence). Two E(N)-modules A and B are stably equivalent
(denoted A ≃ B) if there exist free modules F1 and F2 over E(N) such that A⊕F1

∼= B⊕F2.
In the sequel we write equivalence to stand for stable equivalence.

Definition 2.2 (Stable invertibility). An E(N)-module A is invertible if there exists another
E(N)-module B such that A ⊗ B ≃ k, where ⊗ denotes the tensor product. Recall that k
denotes the base field of the underlying algebra E(N).

Under the operation of tensor products, the set of invertible E(N)-modules forms a group
up to equivalence, called the stable Picard group of E(N) and denoted by StPic(E(N)). The
identity of this group is the base field k (considered as module over E(N)).

Adams and Priddy [4] showed that each module M in StPic(E(1)) can be uniquely
factored into the product of two invertible basis modules I and k[1]. That is, M = Ia⊗(k[1])b

for some integers a and b. We provide our definition and notation for the invertible modules
I and k[1]

Definition 2.3 (Desuspension I). Over the algebra E(N), the desuspension I is defined as
the module generated by all Qi ∈ N .

Example 2.1. Over E(n), I = ⟨Q0, Q1, . . . , Qn⟩.
Definition 2.4 (Grading shift k[1]). Let k[1] denote the module consisting of the base field
k in degree 1 and 0 elsewhere. For any integer a, k[1]a = k[a], which consists of k in degree
a and 0 elsewhere. We call this a grading shift of k by a.

Adams and Priddy [4] also showed that (Ia ⊗ k[b]) ⊗ (Ick[d]) = Ia+c ⊗ k[b + d]. This
implies that the map φ : Z⊕Z → StPic(E(1)) given by (a, b) → Ia⊗k[b] is a homomorphism
[4]. It is this map that we later extend to StPic(E(N)) and prove to be an isomorphism. In
the rest of the paper, we denote the tensor product with concactenation (Ia⊗ k[b] = Iak[b]).

2.2 Margolis homology groups

One crucial tool used in the investigation of stable Picard groups are Margolis homology
groups. We define them in the context of our problem and state results that we employ later.

Definition 2.5 (Margolis homology with respect to Qi). For any module M over E(N), we
can consider each generator Qi of E(N) as a differential on the chain complex

M
Qi−→ M

Qi−→ M.

Because Q2
i = 0 by definition of an exterior algebra, Im Qi ⊆ kerQi. Therefore, we can

assign to M and Qi the Margolis homology group

H(M ;Qi) := kerQi/Im Qi.
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One utility of Margolis homologies is their exact characterization of invertible modules.

Theorem 2.1 (Adams and Priddy [4]). An E(N) module M is invertible if and only if the
Margolis homologies H(M ;Qi) are 1-dimensional over the base field k for all Qi ∈ N .

Margolis homologies also give a necessary and sufficient condition for two modules to be
equivalent.

Theorem 2.2 (Adams and Margolis [8]). Let A and B be E(N) modules. Then A and B are
equivalent if and only if there exists a homomorphism f : A → B that induces isomorphisms
H(A;Qi) ∼= H(B;Qi) for all Qi ∈ N .

Because homologies are often easier to compute, we use Theorem 2.2 in the proof of
Theorem 3.1 and Lemma 5.1.

2.3 Graded structure

Recall that both E(N) and its modules have grading structures. This invariant serves as
a crucial tool that we use extensively. Here we state key facts about their graded structure.

Recall that a graded algebra A is an algebra that can be decomposed into a direct sum

A =
∞⊕
i=0

Ai = A0 ⊕ A1 ⊕ · · ·

where Ai are additive groups such that aiaj ∈ Ai+j for all elements ai ∈ Ai and aj ∈ Aj.
A nonzero element a ∈ Ai is said to be homogeneous of degree i and we denote its degree
by |a| = i. For example, over the algebra C[x] of polynomials, this notion of degree is
exactly the conventional one. Additionally, unless otherwise specified, homomorphism refers
to a homomorphism that respects the grading of its domain and image. That is, if f is a
homomorphism, then for any elements m (in a graded algebra or module) we have |f(m)| =
|m|.

This grading structure on modules over E(n) is inherited by the Margolis homologies of
M (Definition 2.5). In fact, we can determine the exact grading of a Margolis homology for
modules generated by a desuspension I and a grading shift of k.

Lemma 2.3 (Adams and Priddy [4]). If M is equivalent to Iak[b] for some integers a and
b, then H(M ;Qi) consists of the base field k in degree a|Qi|+ b and 0 in all other degrees.

We have now provided all the necessary preliminaries, and we are ready to establish the
results necessary for induction on |N | in StPicE(N) ∼= Z⊕ Z.

3 Injectivity of φ

To show that φ is an isomorphism, we must show that it is injective and surjective. We
prove that it is always injective by solving a system of equations.
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Theorem 3.1. The map φ : Z⊕ Z → StPic(E(N)) given by (a, b) 7→ Iak[b] is injective for
any set of generators N with |N | ≥ 2.

Proof. Suppose φ((a, b)) = φ((c, d)) for some integers a, b, c, and d. Then Iak[b] ≃ Ick[d].
Because |N | ≥ 2, we can pick two generators Qi and Qj of E(N). From Theorem 2.2, we
see that

H(Iak[b];Qi) ∼= H(Ick[d];Qi) and H(Iak[b];Qj) ∼= H(Ick[d];Qj).

Then Lemma 2.3 implies that

a|Qi|+ b = c|Qi|+ d,

a|Qj|+ b = c|Qj|+ d.

However, |Qi| ≠ |Qj| when i ̸= j. Thus, the only solution to this linear system is a = c and
b = d, showing that φ is injective.

To show that φ : Z⊕Z → StPic(E(N)) is also surjective for all sets N with |N | ≥ 2, we
induct on the cardinality of N . Adams and Priddy [4] proved the case where N = {Q0, Q1},
but did not use the particular degrees of the generators in their argument (i.e. |Qi| = 2pi−1),
meaning that their proof easily generalizes to all sets N with |N | = 2. This establishes the
base case |N | = 2.

For the inductive step, suppose it has been shown that all invertible modules over E(S)
where |S| = n are of the form Iak[b] for some integers a and b. We aim to show that
all invertible modules over E(N) where |N | = n + 1 are expressible in this form as well
(Theorem 1.1).

4 Stable structure under restrictions to subalgebras

For an E(N)-module M , we write M |E(S) as the E(S)-module formed by restricting M
to E(S). In particular, we define it as follows.

Definition 4.1. If M is a module over E(N), by definition it is an Abelian group G with
a binary operation E(N) × G → G. We denote M |E(S) by the module formed by the same
Abelian group G with the binary operation restricted to the domain E(S)×G.

First, we show that the stable structure of any invertible M remains constant under
this restriction operation. This allows us to better leverage the inductive hypothesis by
considering M as a module over E(S) where |S| ≤ n.

Lemma 4.1. Let N be a set of generators Qi, and let S be any subset of N . If M is an
invertible E(N) modules such that M ≃ Iak[b] as E(N)-modules, then M |E(S) ≃ Iak[b]|E(S)

as E(S)-modules.
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Proof. If M is stably equivalent to Iak[b], then (by definition) there exists free modules F1

and F2 over E(N) such that
M ⊕ F1

∼= Iak[b]⊕ F2.

Now we show that F1|E(S) and F2|E(S) are still free, which implies

M |E(S) ⊕ F1|E(S)
∼= Iak[b]|E(S) ⊕ F2|E(S)

and thus M |E(S) ≃ Iak[b]|E(S). By definition of a free module, F1 has an E(N) basis
BN = {b1, . . . , bd} for some d. We create a new E(S) basis BS that spans F1|E(S). Note that
we can start with BN and then add all the elements of F1 which are not spanned by this
basis under the restriction to E(S). More specifically, the set

BS = {b1, . . . , bd} ∪ {Qibj | Qi ∈ N,Qi, ̸∈ S, 1 ≤ j ≤ d}

provides an E(S) basis for F1|E(S). For example, whenN = {Q0, . . . Q5} and S = {Q0, . . . Q4},
this basis is {b1, . . . , bd, Q5b1, . . . , Q5bd}.

We can verify that BS spans F1|E(S) because any E(N)-linear combination on b1, . . . , bd
can be expressed as a E(S)-linear combination in this basis. Furthermore, the E(S)-spans
of the elements in BS have trivial intersections, implying linear independence. Hence, we
have found a basis for F1|E(S), showing that it is free. Replacing F1 with F2 in this argument
shows that F2|E(S) is also free and proves the desired statement.

Lemma 4.1 shows that restrictions of a module do not affect its stable structure. Recall
that under the inductive hypothesis, we assume that all invertible modules over E(S) where
|S| = n are of the form Iak[b]. Let M be an invertible module over E(N) where |N | = n+1.
In Theorem 4.2, we prove the stronger result that all restrictions of M are equivalent to
Iak[b], even if we have no information about M itself.

Theorem 4.2. Let N be a set of generators Qi such that |N | ≥ 4 and let S be any proper
subset of N . If M is an invertible E(N) module, then M |E(S) ≃ Iak[b]|E(S) for some fixed
pair of intgers a and b.

In the proof, we create subsets of N with large intersections, examine M restricted to
these intersections, and apply Lemma 4.1 to recover information about M itself.

Proof. The restriction of M to M |E(S) does not change the kernel or image of Qi as long
as Qi ∈ S. Thus, H(M ;Qi) = H(M |E(S);Qi) for all such Qi. Because M is invertible, it
follows from Theorem 2.1 that all Margolis homologies H(M ;Qi) and thus all H(M |E(S);Qi)
are 1-dimensional over k. This shows that any M |E(S) is invertible as well.

First, we show that the desired statement holds when S contains all of N except one
generator. Let A and B be two subsets of N with |A| = |B| = |N | − 1. Because A and B
are invertible, the inductive hypothesis implies that there exist integers a, b, c, d such that

M |E(A) ≃ Iak[b]|E(A) and M |E(B) ≃ Ick[d]|E(B).
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We proceed to show that a = c and b = d. Consider the intersection C of A and B. From
Theorem 3.1, the map φ : Z⊕Z → StPic(E(C)) given by (x, y) 7→ Ixk[y] is injective because
|C| ≥ |N | − 2 ≥ 2. Thus, Iak[b]|E(C) ≃ Ick[d]|E(C) implies a = c and b = d. The pair a, b is
precisely the fixed pair of integers in the statement of the lemma.

Now consider any proper subset S of N . Because S is proper, it is a subset of S ′ ⊂ N
where |S ′| = |N | − 1. We have just shown that M |S′ ≃ Iak[b]|E(S′). From Lemma 4.1, we
see that M |S ≃ Iak[b]|E(S). This proves the lemma.

Remark 4.1. Note that this theorem holds only when |N | ≥ 4 because otherwise the inter-
section C may not contain at least two generators, the minimum needed for injectivity as
guarenteed Theorem 3.1 to hold. In fact, the map φ : Z⊕Z → StPic(E(N)) is not injective
when |N | = 1. This is because there are non-trivial solutions to each individual equation in
the proof of Theorem 3.1. For example, suppose that N = {Q0}. Then

Iak[−a|Q0|] = k

for any integer a. Due to this failure of injectivity, Theorem 1.1 only holds under the
assumption that Z ⊕ Z ∼= StPic(E(N)) where |N | = 3. We provide partial results on this
case later in Section 7.

5 Extremal cases of the Annihilator Ax

Let M be a module over E(N). We define the annihilator Ax of an element x ∈ M as

Ax := {Qi ∈ N | Qix = 0}.

In the proof of Theorem 1.1, we show that for some element x ∈ M , the annihilator Ax is
either all of N or empty. In this section, we provide lemmas that characterize the two cases.
We start by showing that in the case that Ax is the entire set N , we can determine M .

Lemma 5.1. An invertible E(N)-module M is stably equivalent to k if and only if there
exists an element x ∈ M such that Qix = 0 and x ̸∈ Im Qi for all i ∈ N (i.e. Ax = N).

Proof. Suppose M ≃ k; by Theorem 2.2 there exists a homomorphism f : M → N that
induces the isomophisms H(M ;Qi) ∼= H(N ;Qi) for all Qi ∈ N . Note that setting x = f(1)
gives the desired properties because x is a generator of H(M ;Qi) that satisfies

Qif(1) = f(Qi) = f(0) = 0.

Now we prove the converse. Because M is invertible, its Margolis homologies H(M ;Qi)
are 1-dimensional over k by Theorem 2.1. If an element x ∈ M satisfies Qix = 0 for all
Qi, then x generates all H(M ;Qi). Because isomorphisms between 1-dimensional spaces are
determined by mapping one generator to another, the map f : 1 7→ x induces isomorphisms
on the Margolis homologies of k and M , showing that M ≃ k by Theorem 2.2.
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We have characterised the case when Ax = N . Next, we consider the case when Ax is
empty. That is, Qix ̸= 0 for all x ∈ M .

Remark 5.1. This case presents difficulty because multiplying x by more than one generator
could still yield 0. For example, AQ0+Q1 = {∅} but Q0Q1(Q0 + Q1) = 0. To analyse these
possibilities, we introduce the following notation.

Definition 5.1. Let S be a set of generators Qi. We write min(S) for the index of the
generator in S with the lowest degree. Likewise, max(S) denotes the index of the generator
with the highest degree. For example, if S = {Q0, Q1, Q3}, then Qmin(S) = Q0 and Qmax(S) =
Q3.

Definition 5.2. Let S be a set of generators Qi. We define the product of S as

ΠS := Qi1Qi2 · · ·Qi|S|

where i1 = min(S), i|S| = max(S), and i1 < i2 < · · · < i|S|. For example, if S = {Q0, Q1, Q3},
the product ΠS is Q0Q1Q3.

In Lemma 5.2, we consider the case where not only Ax = {∅} but also the stronger
condition of ΠNx ̸= 0. We see that x generates a free module that we can discard from M .

Lemma 5.2. Let N be a set of generators Qi and M a module over E(N). If ΠNx ̸= 0
where x ∈ M , then M contains a free module generated by x. That is M ∼= M ′ ⊕ E(N) for
some E(N) module M ′.

Proof. Consider the short exact sequence

0 −→ ⟨x⟩ a−→ M
b−→ M ′ −→ 0, (1)

where ⟨x⟩ denotes the free module generated by x under left E(N)-action. Here, we consider
the differential a as the inclusion map that sends x to x. Then, because the sequence is
exact, the kernel of b is the image of a, which is the submodule ⟨x⟩ ⊂ M . Thus, M ′ is equal
to the quotient M/ ker a = M/⟨x⟩, the cokernel of a. We show that this M ′ is exactly the
module satisfying the direct sum in the statement of the lemma.

Note that ⟨x⟩ is a free module because it has the E(N)-basis {x}. In Adams and Margolis
[8], Theorem 4.1 proves that free E(N)-modules are also injective. So ⟨x⟩ is also injective.
In consequence, the short exact sequence (1) splits (see, for example, [9]). That is, M =
M ′ ⊕ ⟨x⟩. Because ⟨x⟩ is isomorphic to E(N), we have M ∼= M ′ ⊕ E(N).

In this section we analysed the annihilator Ax, which allows us to deduce the structure of
M by computing products. Together with the results on the restrictions of M in Section 4,
we are now equipped to complete the inductive step.

8



6 Inductive step

Let M be an invertible module over E(N). Recall that we aim to prove that φ : Z⊕Z →
StPic(E(N)) is surjective by showing that any M is of the form Ixk[y] for some integers x
and y when |N | = n+ 1.

From Theorem 4.2, we know that any restriction of M to a proper subset S of N satisfies
M |E(S) ≃ Iak[b]|E(S) for some fixed pair of integers a and b. If we prove that I−ak[−b]M
is of the form Ixk[y], then we can multiply this E(N) module by Iak[b] to see that M ≃
Ix+ak[y + b]. Therefore, without loss of generality, we can assume that

M |E(S) ≃ k|E(S)

by replacing M with I−ak[−b]M . We proceed to show that M ≃ k as E(N) modules.
First, Lemma 6.1 below shows that the Margolis homology groups agree with this ex-

pected equivalence of M . This result serves as a tool to compare different restrictions of
M .

Lemma 6.1. If M |E(S) ≃ k|E(S), each Margolis homology H(M ;Qi) is k in degree 0 for all
Qi ∈ N .

Proof. For any Qi, pick a subset S with at least two elements that contains Qi. Then
M |E(S) ≃ k|E(S), which implies that H(M ;Q0) is k in degree 0 by Lemma 2.3.

Remark 6.1. Although the Margolis homologies of M are isomorphic to that of k as E(N)
modules, Theorem 2.2 does not guarantee that M is stably equivalent to k because this
isomorphism is not necessarily induced by some map from M to k.

To show that M ∼= k⊕F , the core idea is to analyse how Qi acts on some element x ∈ M .
Then, we can use Lemma 5.1 and Lemma 5.2 to show that x must generate either k or F . To
ensure that this element x behaves like a generator, we take it to be the element of minimal
degree in M . The proceeding Lemma 6.2 shows that Ax is either all of N or empty.

Lemma 6.2. Let M be an E(N) module such that M |E(S) ≃ k|E(S) for all proper subsets S
of N . If x ∈ M is of minimal degree, then Ax is either N or {∅}.

Proof. Suppose Qix = 0 for some Qi ∈ N . We show that this leads to Ax = N . Observe
that x cannot be in the image of Q0, as that would imply the existence of y ∈ M such that
Q0y = x, which would contradict the minimality of |x|. Because x is in the kernel but not
the image of Q0, it is a generator of H(M ;Q0). From Lemma 6.1, we see that H(M ;Q0) is
k in degree 0, meaning that |x| = 0.

Suppose for the sake of contradiction that Qjx ̸= 0 for some Qj ∈ N . Consider
M |E({Q0,Qj}). This module is stably equivalent to k by assumption, so there exists some
element x′ ∈ M |E({Q0,Qj}) such that Q0x

′ = Qjx
′ = 0 by Lemma 5.1. Because x and x′ are

both generators of the one-dimensional homology H(M ;Q0), there exists a constant c ∈ k
such that x = cx′. Then

Qjx = cQjx
′ = 0,
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contradicting our assumption that Qjx ̸= 0. Thus, Qix = 0 implies Ax = N . The only other
possibility is that Qix ̸= 0 for all Qi ∈ N , which leads to Ax = {∅}.

If Ax is all of N , Lemma 5.1 implies that M ≃ k, proving the desired statement. So
we proceed with the assumption that Ax = {∅}. Now there are two possibilities for ΠNx:
it is either zero or non-zero. If it is non-zero, then Lemma 5.2 implies that there exists an
E(N) module M ′ such that M = M ′ ⊕ F where F is a free module. Because M ≃ M ′ by
definition, we can pick another minimal degree element x′ of M ′ and apply Lemma 6.2 to
reach the same casework (ΠNx′ is either zero or nonzero). Because M is finitely generated
by assumption, this process of taking out free modules cannot continue indefinitely, and
ΠNx′ = 0 at some point.

We have discussed the cases Ax = N andAx = {∅} with ΠNx ̸= 0. The only possibility
left is Ax = {∅} with ΠNx = 0 where x is a minimal degree element in M . We show that
this is impossible, which would imply M ≃ k and prove Theorem 1.1.

Let N ′ = N \{Qmax(N)}. That is, N ′ is N without its largest generator. Then, we rewrite
ΠNx = 0 as

Qmax(N)(ΠN
′) = 0.

Equivalently, ΠN ′ ∈ kerQmax(N). In H(M ;Qmax(N)), the element ΠN ′ is either a generator
or the zero-class (corresponding to ΠN ′ ∈ Im Qmax(N)). We show that both cases lead to
contradictions. We do this by creating an inequality on degrees of the generators Qi.

Theorem 6.3. Let S be any finite set of generators Qi. Then

|ΠS| < |Qmax(S)+1|.

That is, the degree of the product of all generators in S is less than the degree of the next
highest generator outside S.

Proof. Recall from Section 2 that |Qi| = 2pi − 1 due to E(n) being subalgebras of the dual
Steenrod algebra.

Observe that

|ΠS| ≤ |Q0Q1 · · ·Qmax(S)|

≤
max(S)∑
i=0

2pi − 1

≤ 2 · p
max(S)+1 − 1

p− 1
− (max(S) + 1)(max(S) + 2)

2

≤ (2pmax(S)+1 − 1)− 1

p− 1

< |Qmax(S)+1|.
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We apply Theorem 6.3 to our casework and show that ΠN ′ cannot be the zero class in
H(M ;Qmax(N)).

Corollary 6.4. Let S be any finite set of generators Qi. If x ∈ M has minimal degree, then
(ΠS)x is not in the image of Qj where j ≥ max(S).

Proof. Any element in the image of Qj is in the form Qjy for some y ∈ M . However, by
Theorem 6.3,

|Qjy| = |Qj|+ |y| > |(ΠS)x|
because |Qj| > |ΠS| and |y| ≥ |x|.

Because max(N) > max(N ′) by definition of N ′, Corollary 6.4 demonstrates that ΠN ′

is not in the image of Qmax(N). This forces ΠN ′ to generate H(M ;Qmax(N)). However,
Theorem 6.5 shows that this is also impossible.

Theorem 6.5. If M |E(S) ≃ k|E(S) for all proper subsets S of N . If x ∈ M is of minimal
degree, then there is no generator of H(M ;Qmax(N)) in the form Sx for any S.

Proof. From Lemma 6.1, we see that the Margolis homology H(M ;Qmax(N)) is k in degree
0. However,

|Sx| > 0 because |S| > 0 and |x| = 0.

Thus, Sx cannot be a generator if S is non-empty.

We began by picking a minimal element x ∈ M where M is an E(N) module. Then,
Lemma 6.2 shows that Ax is either N or {∅}. In the former case, M is equivalent to k. In the
latter case, Corollary 6.4 and Theorem 6.5 show that we must have (ΠN) ̸= 0. Therefore, we
can reduce M to M ′ and pick another minimal element. Repeating this process a sufficient
number of times leads to Ax = 0 and M ≃ k. Thus, all invertible E(N) modules are of the
form Iak[b].

Together with injectivity proved in Theorem 3.1, we conclude that the map φ : Z⊕Z →
StPic(E(N)) given by (a, b) 7→ Iak[b] is an isomorphism for all sets N with |N | ≥ 2. This
proves Theorem 1.1.

7 Analysis of |N | = 3 and Future Work

As discussed in Remark 4.1, Theorem 1.1 relies on Theorem 4.2, which has only been
proven for |N | ≥ 4. In this section, we extend Theorem 4.2 to several cases of modules M
over E(N) where |N | = 3, and present possible approaches for future research.

Let N = {Qα, Qβ, Qγ} where α < β < γ, and let M be a module over E(N). The base
case |N | = 2 proven by Adams and Priddy [4] implies that there exist integers a and b such
that

M |E({Qα,Qβ}) ≃ Iak[b]|E({Qα,Qβ}).

Without loss of generality, we can replace M with I−ak[−b]M so that M |E({Qα,Qβ}) ≃
k|E({Qα,Qβ}). Note that Theorem 4.2 does not imply M |E(S) ≃ k|E(S) for any proper subset
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S ⊂ N because |N | < 4. Nevertheless, by comparing Margolis homologies, we characterise
the stable structure of M |E(S) in Lemma 7.1.

Lemma 7.1. If M is a module over E({Qα, Qβ, Qγ}) such that M |E({Qα,Qβ}) ≃ k|E({Qα,Qβ}),
then

M |E({Qα,Qγ}) ≃ Ink[−n|Qα|]|E({Qα,Qγ}),

M |E({Qβ ,Qγ}) ≃ Imk[−m|Qβ|]|E({Qβ ,Qγ}),

n(|Qγ| − |Qα|) = m(|Qγ| − |Qβ|).

for some integers n and m.

In the proof of Lemma 7.1, we form equations characterisingM |E({Qα,Qγ}) andM |E({Qβ ,Qγ})
by calculating the degree of each Margolis homology of M in two different ways.

Proof. By the base case |N | = 2, we have the equivalences

M |E({Qα, Qγ}) ≃ Ink[n′]|E({Qα,Qγ}) and M |E({Qβ, Qγ}) ≃ Imk[m′]|E({Qβ ,Qγ})

for some integers n, n′,m,m′. We proceed to express n′ and m′ in terms of n and m respec-
tively.

Applying Lemma 2.3 to M |E({Qα,Qβ}) ≃ k|E({Qα,Qβ}) shows that H(M ;Qα) and H(M ;Qβ)
are both k in degree 0. Applying the same theorem to M |E({Qα,Qγ}) shows that

n|Qα|+ n′ = |H(M ;Qα)| = 0 =⇒ n′ = −n|Qα|.

Similarly,
m|Qβ|+m′ = |H(M ;Qβ)| = 0 =⇒ m′ = −m|Qβ|.

This shows that

M |E({Qα,Qγ}) ≃ Ink[−n|Qα|]|E({Qα,Qγ}) and M |E({Qβ ,Qγ}) ≃ Imk[−m|Qβ|]|E({Qβ ,Qγ})

Lastly, using the two modules above to compute H(M ;Qγ), we see that

n(|Qγ| − |Qα|) = m(|Qγ| − |Qβ|).

This proves Lemma 7.1.

Using Lemma 7.1, we described all restrictions of M using just one unknown, either n
or m. Now, we try the same approach as previously: casework on the annihilator Ax. Let
x ∈ M be an element with minimal degree. We cannot apply Lemma 6.2 because M |E(S) is
not equivalent to k for all subsets S ⊂ N . Nevertheless, in the proceeding Lemma 7.2, we
characterize it using M |E({Qα,Qβ}) ≃ k|E({Qα,Qβ}).

Lemma 7.2. If M is an E(N) module such that M |E({Qα,Qβ}) ≃ k|E({Qα,Qβ}) and x ∈ M
has minimal degree, then Ax either contains both Qα and Qβ or neither. That is, either
Qαx = Qβx = 0 or QαQβx ̸= 0.
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The proof for Lemma 7.2 is found in Appendix A.1.
First we examine the case where QαQβx ̸= 0. There are two further cases: either

Ax = {∅} or Ax = {Qγ}. If Ax is empty, Lemma 5.2 implies the existence of a free module
F over E(N) such that M = M ′ ⊕ F . We pick another minimal element from M ′ and
calculate its annihilator again. If Ax = {Qγ}, Lemma 7.3 shows that a contradiction arises
due to the degree conditions of the generators.

Lemma 7.3. If M is an E(N) module such that M |E({Qα,Qβ}) ≃ k|E({Qα,Qβ}), x ∈ M has
minimal degree, then Ax cannot be {Qγ}.

The proof for Lemma 7.3 is found in Appendix A.2, which uses an inequality on the
degrees of Qα, Qβ, and Qγ to deduce the desired result. Therefore, in the case that QαQβx ̸=
0, we can always reduce M to a submodule M ′.

We are left with the case Qαx = Qβx = 0. If Qγx = 0, then M ≃ k by Lemma 5.1 and
we are done. Otherwise, Qγx ̸= 0. This is the only possibility left to analyse. If Theorem 4.2
is true for all |N | ≥ 3, then this possibility is impossible. However, it is unknown how
to create a contradiction arising from Qγx ̸= 0. There may even exist a counterexample
to Theorem 4.2 when |N | = 3, similar to the Joker module mentioned in Section 1. The
investigation of this case will be the subject of future work.

8 Ackowledgements

I would like to extend my deepest gratitude towards my mentor David Lee for suggesting
this project and his invaluable guidance througout the past 6 weeks. I would also like to thank
Dr. Tanya Khovanova of the Department of Mathematics at the Massachusetts Institute of
Technology for her advice on early drafts of the paper. My appreciation also extends to
my tutor Peter Gaydarov, who gave me countless advise regarding the presentation of my
project; my last week teaching assistant Allen Lin for all his suggestsions; and Dr. John
Rickert for his feedback on the mathematical organization of this project. Thank you to
the Center for Excellence in Education (CEE), the Massachusetts Institute of Technology
(MIT), and the Research Science Institute (RSI) for giving me this amazing opportunity.
Finally, I would like to express my gratitude to my sponsors.

13



References

[1] Salix Alba. “Winding circles”. https://upload.wikimedia.org/wikipedia/commons/
3/3d/Fundamental_group_of_the_circle.svg. CC BY-SA 3.0.

[2] N. Johnson. Hopf Fibration. https://upload.wikimedia.org/wikipedia/commons/b/
b9/Hopf_Fibration.png. CC BY-SA 3.0.

[3] J. Adams. On the Structure and Applications of the Steenrod Algebra. Commentarii
Mathematici Helvetici, 32:180–214, Dec. 1958. Received 07 June 1957.

[4] J. Adams and S. Priddy. Uniqueness of BSO. Mathematical Proceedings of the Cambridge
Philosophical Society, 80(3):475–509, 1976.

[5] P. Bhattacharya and N. Ricka. The Stable Picard Group of A(2). arXiv preprint
arXiv:1702.01493, 2017.

[6] J. Pan and R. Yan. The Stable Picard Group of A(n). arXiv preprint arXiv:2212.09985,
2022.

[7] J. Milnor. The Steenrod Algebra and Its Dual. Annals of Mathematics, 67(1):150–171,
1958.

[8] J. Adams and H. Margolis. Modules over the Steenrod algebra. Topology, 10(4):271–282,
1971.

[9] C. A. Weibel. An Introduction to Homological Algebra. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 1994.

14

https://upload.wikimedia.org/wikipedia/commons/3/3d/Fundamental_group_of_the_circle.svg
https://upload.wikimedia.org/wikipedia/commons/3/3d/Fundamental_group_of_the_circle.svg
https://upload.wikimedia.org/wikipedia/commons/b/b9/Hopf_Fibration.png
https://upload.wikimedia.org/wikipedia/commons/b/b9/Hopf_Fibration.png


A Appendix

A.1 Proof of Lemma 7.2

Proof. Suppose Qαx = 0. If x is also in the image of Qα, then there exists some element
y ∈ M such that x = Qαy. This element y has degree |x| − |Qα|, which contradicts the
minimality of x. Thus, x is not in the image of Qα and it generates H(M ;Qα). Because
M |E({Qα,Qβ}) ≃ k|E({Qα,Qβ}), the Margolis homologyH(M ;Qα) is k in degree 0 by Lemma 2.3.
This implies that |x| = 0. Furthermore, Lemma 5.1 shows that there must exist a generator
x′ of both H(M ;Qα) and H(M ;Qβ) in degree 0. This x′ is a scalar multiple of x. Therefore
Qβx = 0. Thus, either Qαx = Qβx = 0 or QαQβx ̸= 0.

Suppose Ax does not contain either Qα or Qβ.

A.2 Proof of Lemma 7.3

Proof. Suppose M is an E(N) module such that M |E({Qα,Qβ}) ≃ k|E({Qα,Qβ}) and x ∈ M has
minimal degree. Note that

Qγ(QβQα)x = (QβQα)Qγx = 0 =⇒ QβQαx ∈ kerQγ.

If QβQαx is also in the image of Qγ, then there exists another element y such that QβQαx =
Qγy. However, Theorem 6.3 implies that y has a degree lower than x, which is impossible.
Thus, QβQαx generates the Margolis homology H(M ;Qγ). Using Lemma 2.3, we calculate
H(M ;Qγ) to be k in degree n(|Qγ|−|Qα|) = m(|Qγ|−|Qβ|). Any generator of the homology
must also be in this degree. Therefore,

|QβQαx| = n(|Qγ| − |Qα|) =⇒ |x| = n(|Qγ| − |Qα|)− |QβQα|
= n(|Qγ|)− (n+ 1)|Qα| − |Qβ|
= n(2pγ − 1)− (n+ 1)(2pα − 1)− 2pβ + 1

= 2(n(pγ − pα)− pα − pβ + 1) ̸= 0.

Note that this final expression is positive when n is positive, and negative when n is negative.
However, this contradicts the fact that the element of minimum degree in M |E({Qβ ,Qγ}) ≃
Imk[−m|Qβ|]|E({Qβ ,Qγ}) has positive degree when n is negative, and has negative degree when
n is positive. Therefore, it is impossible that Ax = {Qγ}.
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